8、=c當(dāng) b<1 時(shí), c>a (a ≠ 0 b ≠ 0)
③除以等于 1 的數(shù),商等于被除數(shù): a÷ b=c當(dāng) b=1 時(shí), c=a 三、分?jǐn)?shù)除法混合運(yùn)算
1、混合運(yùn)算用梯等式計(jì)算,等號(hào)寫在第一個(gè)數(shù)字的左下角。
2、運(yùn)算順序:
①連除:同級(jí)運(yùn)算,按照從左往右的順序進(jìn)展計(jì)算;或者先把所有除法轉(zhuǎn)化成
乘法再計(jì)算;或者依據(jù)“除以幾個(gè)數(shù),等于乘上這幾個(gè)數(shù)的積〞的簡便方法計(jì)算。
加、減法為一級(jí)運(yùn)算,乘、除法為二級(jí)運(yùn)算。
----
----
②混合運(yùn)算:沒有括號(hào)的先乘、除后加、減,有括號(hào)的先算括號(hào)里面,再算括號(hào)外面。
〔a±b〕÷c=a÷c±b÷c
第四單元比
比:兩個(gè)數(shù)相除也叫兩
9、個(gè)數(shù)的比
1、比式中,比號(hào)〔∶〕前面的數(shù)叫前項(xiàng),比號(hào)后面的項(xiàng)叫做后項(xiàng),比號(hào)相當(dāng)于除號(hào),比的前項(xiàng)除以后項(xiàng)的商叫做比值。
連比方: 3:4:5 讀作:3 比 4 比 5
2、比表示的是兩個(gè)數(shù)的關(guān)系,可以用分?jǐn)?shù)表示,寫成分?jǐn)?shù)的形式,讀作幾比幾。
例: 12∶ 20= = 12÷20= =0.6 12∶20 讀作: 12 比 20
區(qū)分比和比值:比值是一個(gè)數(shù),通常用分?jǐn)?shù)表示,也可以是整數(shù)、小數(shù)。
比是一個(gè)式子,表示兩個(gè)數(shù)的關(guān)系,可以寫成比,也可以寫成分?jǐn)?shù)的形式。
3、比的根本性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以一樣的數(shù)〔0 除外〕,比值
不變。
4、化簡比:化簡之后結(jié)果還是一個(gè)比,不是
10、一個(gè)數(shù)。
( 1〕、用比的前項(xiàng)和后項(xiàng)同時(shí)除以它們的最大公約數(shù)。
( 2〕、兩個(gè)分?jǐn)?shù)的比,用前項(xiàng)后項(xiàng)同時(shí)乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。也可以求出比值再寫成比的形式。
( 3〕、兩個(gè)小數(shù)的比,向右移動(dòng)小數(shù)點(diǎn)的位置,也是先化成整數(shù)比。
5、求比值:把比號(hào)寫成除號(hào)再計(jì)算,結(jié)果是一個(gè)數(shù)〔或分?jǐn)?shù)〕,相當(dāng)于商,不
是比。
6、比和除法、分?jǐn)?shù)的區(qū)別:
除法
被除數(shù)
除號(hào)〔÷〕
除數(shù)
除法是一種
運(yùn)算
分?jǐn)?shù)
分子
分?jǐn)?shù)線〔—〕分母
分?jǐn)?shù)是一個(gè)
數(shù)
比
前項(xiàng)比號(hào)
比號(hào)〔∶〕
后項(xiàng)
比表示兩個(gè)
11、
數(shù)的關(guān)系
----
----
商不變性質(zhì):被除數(shù)和除數(shù)同時(shí)乘或除以一樣的數(shù)〔
分?jǐn)?shù)的根本性質(zhì):分子和分母同時(shí)乘或除以一樣的數(shù)〔
變。
分?jǐn)?shù)除法和比的應(yīng)用
1、單位“ 1的〞量用乘法。
2、未知單位“ 1的〞量用除法。
0 除外〕,商不變。
0 除外〕,分?jǐn)?shù)的大小不
----
----
3、分?jǐn)?shù)應(yīng)用題根本數(shù)量關(guān)系〔把分?jǐn)?shù)看成比〕
〔 1〕甲是乙的幾分之幾?
----
----
甲=乙×幾分之幾乙=甲÷幾分之幾幾分之幾=甲÷乙
〔 2〕甲比乙多〔少〕幾分之幾?
4、按比例分配:把一個(gè)量按一定的比分配的方法叫做按比例分配。
5、畫線段圖:
12、
〔 1〕找出單位“1的〞量,先畫出單位“1,〞標(biāo)出和未知。
----
----
( 2〕分析數(shù)量關(guān)系。〔 3〕找等量關(guān)系。〔 4〕列方程。
兩個(gè)量的關(guān)系畫兩條線段圖,局部和整體的關(guān)系畫一條線段圖。
圓
一、圓的特征
1、圓是平面內(nèi)封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動(dòng)。
3、圓心 O:圓中心的點(diǎn)叫做圓心.圓心一般用字母 O 表示。
圓屢次對(duì)折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑 r:連接圓心到圓上任意一點(diǎn)的線段叫做半徑。在同一個(gè)圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑 d:通過圓心且兩端都在圓上的
13、線段叫做直徑。在同一個(gè)圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。
同圓或等圓內(nèi)直徑是半徑的 2 倍: d=2r 或 r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個(gè)圓叫做同心圓。
5、圓是軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線對(duì)折,兩側(cè)的圖形能夠完全重合,這個(gè)圖形是軸對(duì)稱圖形。折痕所在的直線叫做對(duì)稱軸。
有一條對(duì)稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對(duì)稱軸的圖形:長方形
有三條對(duì)稱軸的圖形:等邊三角形
有四條對(duì)稱軸的圖形:正方形
有無條對(duì)稱軸的圖形:圓,圓環(huán)
6、畫圓
( 1
14、〕圓規(guī)兩腳間的距離是圓的半徑?!?2〕畫圓步驟:定半徑、定圓心、旋轉(zhuǎn)一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C 表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個(gè)固定值,叫做圓周率,用字母π表示。即:圓周率π = 周長÷直徑≈3.14
所以 ,圓的周長 (c)=直徑 (d) ×圓周率 ( π) —周長公式: c=πd, c=2 πr圓周率π是一個(gè)無限不循環(huán)小數(shù), 3.14 是近似值。
3、周長的變化的規(guī)律:半徑擴(kuò)大多少倍直徑也擴(kuò)大多少倍,周長擴(kuò)大的倍數(shù)與半徑、直徑擴(kuò)大的倍數(shù)一樣。
4、半圓周長=圓周長一半+直徑=πr+d
三
15、、圓的面積 s
1、圓面積公式的推導(dǎo)
如圖把一個(gè)圓沿直徑等分成假設(shè)干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。
圓的半徑 =長方形的寬
圓的周長的一半 =長方形的長
長方形面積 =長×寬
所以:圓的面積 =圓的周長的一半〔πr〕×圓的半徑〔 r〕
S圓 =π r × r= π r2
----
----
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積那么最大,而長方形的面積那么最小。
周長一樣時(shí),圓面積最大,利用這一特點(diǎn),籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴(kuò)大多少倍 ,直徑、周長也同時(shí)擴(kuò)大
16、多少倍,圓面積擴(kuò)大的倍數(shù)是半徑、直徑擴(kuò)大的倍數(shù)的平方倍。
4、環(huán)形面積=大圓–小圓 =π R2-π r2
扇形面積 =πr2 ×n÷360〔n表示扇形圓心角的度數(shù)〕
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因?yàn)閮蓷l直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是: 2×π×跑道寬度。
一個(gè)圓的半徑增加 a 厘米,周長就增加2πa厘米。
一個(gè)圓的直徑增加 b 厘米,周長就增加πb厘米。
6、任意一個(gè)正方形的內(nèi)切圓即最大圓的直徑是正方形的邊長,它們的面積比是
4∶π。
7、常用數(shù)據(jù)
π =3.14 2 π =6.28 3 π
17、 =9.42 4 π =12.56 5 π =15.7
第六單元
百分?jǐn)?shù)〔一〕
一、百分?jǐn)?shù)的意義:表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù)叫做百分?jǐn)?shù)。百分?jǐn)?shù)又叫百分比或百分率,百分?jǐn)?shù)不能帶單位。
注意:百分?jǐn)?shù)是專門用來表示一種特殊的倍比關(guān)系的,表示兩個(gè)數(shù)的比。
1、百分?jǐn)?shù)和分?jǐn)?shù)的區(qū)別和聯(lián)系:
( 1〕聯(lián)系:都可以用來表示兩個(gè)量的倍比關(guān)系。
( 2〕區(qū)別:意義不同:百分?jǐn)?shù)只表示倍比關(guān)系,不表示具體數(shù)量,所以不能帶
單位。分?jǐn)?shù)不僅表示倍比關(guān)系,還能帶單位表示具體數(shù)量。百分?jǐn)?shù)的分子可以是小數(shù),分?jǐn)?shù)的分子只可以是整數(shù)。
注意:百分?jǐn)?shù)在生活中應(yīng)用廣泛,所涉及問題根本和分?jǐn)?shù)問題一樣,分母是 1
18、00 的分?jǐn)?shù)并不是百分?jǐn)?shù),必須把分母寫成“%〞才是百分?jǐn)?shù),所以“分母是 100 的分?jǐn)?shù)就是百分?jǐn)?shù)〞這句話是錯(cuò)誤的?!?〞的兩個(gè) 0 要小寫,不要與百分?jǐn)?shù)前面的數(shù)混淆。一般來講,出勤率、成活率、合格率、正確率能到達(dá) 100%,出米率、出油率達(dá)不到 100%,完成率、增長了百分之幾等可以超過 100%。一般出粉率在 70%、80%,出油率在 30%、40%。
2、小數(shù)、分?jǐn)?shù)、百分?jǐn)?shù)之間的互化
( 1〕百分?jǐn)?shù)化小數(shù):小數(shù)點(diǎn)向左移動(dòng)兩位,去掉“%〞。
( 2〕小數(shù)化百分?jǐn)?shù):小數(shù)點(diǎn)向右移動(dòng)兩位,添上“%〞。
( 3〕百分?jǐn)?shù)化分?jǐn)?shù):先把百分?jǐn)?shù)寫成分母是 100 的分?jǐn)?shù),然后再化簡成最簡分?jǐn)?shù)。
(
19、 4〕分?jǐn)?shù)化百分?jǐn)?shù):分子除以分母得到小數(shù),〔除不盡的保存三位小數(shù)〕然后化成百分?jǐn)?shù)。
( 5〕小數(shù)化分?jǐn)?shù):把小數(shù)成分母是 10、 100、1000 等的分?jǐn)?shù)再化簡。
( 6〕分?jǐn)?shù)化小數(shù):分子除以分母。
二、百分?jǐn)?shù)應(yīng)用題
1、求常見的百分率 ,如:達(dá)標(biāo)率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾。
----
----
2、求一個(gè)數(shù)比另一個(gè)數(shù)多〔或少〕百分之幾,實(shí)際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾:〔甲-乙〕÷乙
求乙比甲少百分之幾:〔甲-乙〕÷甲
3、求一個(gè)數(shù)的百分
20、之幾是多少。一個(gè)數(shù)〔單位“1〕〞×百分率
4、一個(gè)數(shù)的百分之幾是多少,求這個(gè)數(shù)。
局部量÷百分率 =一個(gè)數(shù)〔單位“1〕〞
5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十折扣、成數(shù) =幾分之幾、百分之幾、小數(shù)
八折 =八成 =十分之八 =百分之八十 =0.8
八五折 =八成五 =十分之八點(diǎn)五 =百分之八十五 =0.85 五折 =五成 =十分之五 =百分之五十 =0.5=半價(jià)6、利率
( 1〕存入銀行的錢叫做本金。
( 2〕取款時(shí)銀行多支付的錢叫做利息。
( 3〕利息與本金的比值叫做利率。
利息 =本金×利率×?xí)r間
稅后利息 =利息 -利息的應(yīng)納稅額 =利息 -利息×5
21、%
注:國債和教育儲(chǔ)蓄的利息不納稅
7、百分?jǐn)?shù)應(yīng)用題型分類
( 1〕求甲是乙的百分之幾——〔甲÷乙〕×100%=百分之幾
( 2〕求甲比乙多百分之幾——〔甲 -乙〕÷乙×100%
( 3〕求甲比乙少百分之幾——〔乙 -甲〕÷乙×100%扇形統(tǒng)計(jì)圖的意義
1、扇形統(tǒng)計(jì)圖的意義:用整個(gè)圓的面積表示總數(shù),用圓內(nèi)各個(gè)扇形面積表示各
局部數(shù)量同總數(shù)之間關(guān)系,也就是各局部數(shù)量占總數(shù)的百分比,因此也叫百分比圖。
2、常用統(tǒng)計(jì)圖的優(yōu)點(diǎn):
( 1〕條形統(tǒng)計(jì)圖直觀顯示每個(gè)數(shù)量的多少。
( 2〕折線統(tǒng)計(jì)圖不僅直觀顯示數(shù)量的增減變化,還可清晰看出各個(gè)數(shù)量的多少。
( 3〕扇形統(tǒng)計(jì)圖直觀顯示局部和總量的關(guān)系。
數(shù)學(xué)廣角 --數(shù)與形
2+4+6+8+10+12+ 14+16+ 18+20=〔110〕規(guī)律:從 2 開場(chǎng)的 n 個(gè)連續(xù)偶數(shù)的和等于n×(n+1)。
10× (10+1)= 10× 11=110
----
----
從 1 開場(chǎng)的連續(xù)奇數(shù)的和正好是這串?dāng)?shù)個(gè)數(shù)的平方。返回搜狐,查看更多
聲明:本文由入駐搜狐號(hào)的作者撰寫,除搜狐官方賬號(hào)外,觀點(diǎn)僅代表作者本人,不代表搜狐立場(chǎng)。
----