《2017-2018版高中數(shù)學 第一章 常用邏輯用語 3.3 全稱命題與特稱命題的否定學案 北師大版選修2-1》由會員分享,可在線閱讀,更多相關《2017-2018版高中數(shù)學 第一章 常用邏輯用語 3.3 全稱命題與特稱命題的否定學案 北師大版選修2-1(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
3.3 全稱命題與特稱命題的否定
學習目標 1.理解全稱命題與特稱命題的否定的意義.2.會對全稱命題與特稱命題進行否定.3.掌握全稱命題的否定是特稱命題,特稱命題的否定是全稱命題.
知識點一 全稱命題的否定
思考 嘗試寫出下面全稱命題的否定,并歸納寫全稱命題否定的方法.
(1)所有矩形都是平行四邊形;
(2)每一個素數(shù)都是奇數(shù);
(3)任意x∈R,x2-2x+1≥0.
梳理 寫全稱命題的否定的方法:(1)更換量詞,將全稱量詞換為存在量詞;(2)將結(jié)論否定.
全稱命題的否定是______命題.
知識點二 特稱命題的否定
思考 嘗試寫出下面特稱命題的
2、否定,并歸納寫特稱命題否定的方法.
(1)有些實數(shù)的絕對值是正數(shù);
(2)某些平行四邊形是菱形;
(3)存在x∈R,x2+1<0.
梳理 寫特稱命題的否定的方法:(1)將存在量詞改寫為全稱量詞;(2)將結(jié)論否定.
特稱命題的否定是______命題.
類型一 全稱命題的否定
例1 寫出下列全稱命題的否定:
(1)任何一個平行四邊形的對邊都平行;
(2)數(shù)列:1,2,3,4,5中的每一項都是偶數(shù);
(3)任意a,b∈R,方程ax=b都有唯一解;
(4)可以被5整除的整數(shù),末位是0.
反思與感悟 全稱命題的否定是特稱命題,對省略全稱量詞的全
3、稱命題可補上量詞后進行否定.
跟蹤訓練1 寫出下列全稱命題的否定:
(1)p:每一個四邊形的四個頂點共圓;
(2)p:所有自然數(shù)的平方都是正數(shù);
(3)p:任何實數(shù)x都是方程5x-12=0的根;
(4)p:對任意實數(shù)x,x2+1≥0.
類型二 特稱命題的否定
例2 寫出下列特稱命題的否定,并判斷其否定的真假.
(1)p:存在x>1,使x2-2x-3=0;
(2)p:有些素數(shù)是奇數(shù);
(3)p:有些平行四邊形不是矩形.
反思與感悟 特稱命題的否定是全稱命題,寫命題的否定時要分別改變其中的量詞和判斷詞.
跟蹤訓練2 寫出下列特稱命題的否定,并
4、判斷其否定的真假.
(1)有些實數(shù)的絕對值是正數(shù);
(2)某些平行四邊形是菱形;
(3)存在x,y∈Z,使得x+y=3.
類型三 特稱命題、全稱命題的綜合應用
例3 已知函數(shù)f(x)=x2-2x+5.
(1)是否存在實數(shù)m,使不等式m+f(x)>0對于任意x∈R恒成立,并說明理由;
(2)若存在一個實數(shù)x,使不等式m-f(x)>0成立,求實數(shù)m的取值范圍.
反思與感悟 對于涉及是否存在的問題,通常總是假設存在,然后推出矛盾,或找出存在符合條件的元素.一般地,對任意的實數(shù)x,a>f(x)恒成立,只要a>f(x)max;若存在一個實數(shù)x,使a>f(x
5、)成立,只需a>f(x)min.
跟蹤訓練3 已知f(x)=3ax2+6x-1(a∈R).
(1)當a=-3時,求證:對任意x∈R,都有f(x)≤0;
(2)如果對任意x∈R,不等式f(x)≤4x恒成立,求實數(shù)a的取值范圍.
1.已知a>0且a≠1,命題“存在x>1,logax>0”的否定是( )
A.存在x≤1,logax>0 B.存在x>1,logax≤0
C.任意x≤1,logax>0 D.任意x>1,logax≤0
2.設x∈Z,集合A是奇數(shù)集,集合B是偶數(shù)集.若命題p:任意x∈A,2x∈B,則命題p的否定是( )
A.任意x∈A,2x?
6、B B.任意x?A,2x?B
C.存在x?A,2x∈B D.存在x∈A,2x?B
3.命題“對任意一個實數(shù)x,都有>0”的否定是____________________.
4.由命題“存在x∈R,x2+2x+m≤0”是假命題,得實數(shù)m的取值范圍是(a,+∞),則實數(shù)a=________.
5.已知函數(shù)f(x)=x2-mx+1,命題p:“對任意x∈R,都有f(x)>0”,命題q:“存在x∈R,使x2+m2<9”.若命題p的否定與q均為真命題,求實數(shù)m的取值范圍.
1.對含有全稱量詞的命題進行否定需兩步操作:第一步,將全稱量詞改寫成存在量詞,即將“任意”改為“
7、存在”;第二步,將結(jié)論加以否定,如:將“≥”否定為“<”.
2.對含有存在量詞的命題進行否定需兩步操作:第一步,將存在量詞改寫成全稱量詞;第二步,將結(jié)論加以否定.含有存在量詞的命題的否定是含有全稱量詞的命題.注意命題中可能省略了全稱或存在意義的量詞,要注意判斷.
3.全稱命題的否定是特稱命題,特稱命題的否定是全稱命題,因此在書寫時,要注意量詞以及形式的變化,熟練掌握下列常見詞語的否定形式:
原詞語
否定詞語
原詞語
否定詞語
是
不是
至少有一個
一個也沒有
都是
不都是
至多有一個
至少有兩個
大于
不大于
至少有n個
至多有(n-1)個
小于
不小于
8、
至多有n個
至少有(n+1)個
任意的
某個
能
不能
所有的
某些
等于
不等于
提醒:完成作業(yè) 第一章 §3 3.3
答案精析
問題導學
知識點一
思考 (1)將量詞“所有”換為:“存在一個”然后將結(jié)論否定,即“不是平行四邊形”,所以原命題的否定為“存在一個矩形不是平行四邊形”;用同樣的方法可得(2)(3)的否定:
(2)存在一個素數(shù)不是奇數(shù);
(3)存在x∈R,x2-2x+1<0.
梳理 (2)特稱
知識點二
思考 (1)先將存在量詞“有些”改寫為全稱量詞“所有”,然后將結(jié)論“實數(shù)的絕對值是正數(shù)”否定,即“實數(shù)的絕對值不是正數(shù),于是得原命題的
9、否定為“所有實數(shù)的絕對值都不是正數(shù)”;同理可得(2)(3)的否定:
(2)所有平行四邊形都不是菱形;
(3)任意x∈R,x2+1≥0.
梳理 (2)全稱
題型探究
例1 解 (1)其否定:存在一個平行四邊形,它的對邊不都平行.
(2)其否定:數(shù)列:1,2,3,4,5中至少有一項不是偶數(shù).
(3)其否定:存在a,b∈R,使方程ax=b的解不唯一或不存在.
(4)其否定:存在被5整除的整數(shù),末位不是0.
跟蹤訓練1 解 (1)其否定:存在一個四邊形,它的四個頂點不共圓.
(2)其否定:有些自然數(shù)的平方不是正數(shù).
(3)其否定:存在實數(shù)x不是方程5x-12=0的根.
(4)其
10、否定:存在實數(shù)x,使得x2+1<0.
例2 解 (1)其否定:任意x>1,x2-2x-3≠0(假).
(2)其否定:所有的素數(shù)都不是奇數(shù)(假).
(3) 其否定:所有的平行四邊形都是矩形(假).
跟蹤訓練2 解 (1)命題的否定是“不存在一個實數(shù),它的絕對值是正數(shù)”,即“所有實數(shù)的絕對值都不是正數(shù)”.為假命題.
(2)命題的否定是“沒有一個平行四邊形是菱形”,即“每一個平行四邊形都不是菱形”.由于菱形是平行四邊形,因此命題的否定是假命題.
(3)命題的否定是“任意x,y∈Z,x+y≠3”.當x=0,y=3時,x+y=3,因此命題的否定是假命題.
例3 解 (1)不等式m+f(x)
11、>0可化為m>-f(x),
即m>-x2+2x-5=-(x-1)2-4.
要使m>-(x-1)2-4對于任意x∈R恒成立,只需m>-4即可.
故存在實數(shù)m,使不等式m+f(x)>0對于任意x∈R恒成立,此時,只需m>-4.
(2)不等式m-f(x)>0可化為m>f(x),若存在一個實數(shù)x,使不等式m>f(x)成立,只需m>f(x)min.
又f(x)=(x-1)2+4,
∴f(x)min=4,∴m>4.
∴所求實數(shù)m的取值范圍是(4,+∞).
跟蹤訓練3 (1)證明 當a=-3時,
f(x)=-9x2+6x-1,
∵Δ=36-4×(-9)×(-1)=0,
∴對任意x∈R,都有f(x)≤0.
(2)解 ∵f(x)≤4x恒成立,
∴3ax2+2x-1≤0恒成立,
∴即
解得a≤-,
即實數(shù)a的取值范圍是(-∞,-].
當堂訓練
1.D 2.D
3.存在一個實數(shù)x,使得2x+4≤0 4.1
5.解 由于命題p:“對任意x∈R,都有f(x)>0”,所以命題p的否定為“不等式f(x)≤0在實數(shù)集上有解”,故Δ=m2-4≥0,得m≤-2或m≥2.又命題q:“存在x∈R,使x2+m2<9”,即不等式x2<9-m2在實數(shù)集上有解,故9-m2>0,所以-3