秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2018高中數學 初高中銜接讀本 專題5.2 三角形的重心、垂心、外心和內心高效演練學案

上傳人:彩*** 文檔編號:104727298 上傳時間:2022-06-11 格式:DOC 頁數:6 大?。?97KB
收藏 版權申訴 舉報 下載
2018高中數學 初高中銜接讀本 專題5.2 三角形的重心、垂心、外心和內心高效演練學案_第1頁
第1頁 / 共6頁
2018高中數學 初高中銜接讀本 專題5.2 三角形的重心、垂心、外心和內心高效演練學案_第2頁
第2頁 / 共6頁
2018高中數學 初高中銜接讀本 專題5.2 三角形的重心、垂心、外心和內心高效演練學案_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018高中數學 初高中銜接讀本 專題5.2 三角形的重心、垂心、外心和內心高效演練學案》由會員分享,可在線閱讀,更多相關《2018高中數學 初高中銜接讀本 專題5.2 三角形的重心、垂心、外心和內心高效演練學案(6頁珍藏版)》請在裝配圖網上搜索。

1、 第2講 三角形的重心、垂心、外心和內心 三角形是最重要的基本平面圖形,它包含了豐富的知識,也蘊含了深刻的思想,很多較復雜的圖形問題可以化歸為三角形的問題。三角形與高中三角函數、向量、解三角形及立體幾何等部分都有密切的聯系,因而扎實掌握三角形的相關知識是進一步學習的基礎。 初中階段大家已經學習了三角形邊上中線、高線、垂直平分線及內角平分線的一些性質。如三角形角平分線上的點到這個角兩邊的距離相等;三角形邊的垂直平分線上的點到這條邊兩個端點的距離相等,諸如此類。 在高中學習中,還會涉及到三角形三條中線交點(重心)、三條高線交點(垂心)、三條邊的垂直平分線交點(外心)及三條內角平分線

2、交點(內心)的問題,因而有必要進一步了解它們的性質。 【知識梳理】 三角形的四心 (1)角平分線:三角形的三條角平分線交于一點,這點叫做三角形的內心,它到三角形各邊的距離相等. (2)高線:三角形的三條高線交于一點,這點叫做三角形的垂心. (3)中線:三角形的三條中線交于一點,這點叫做三角形的重心. (4)垂直平分線:三角形的三條垂直平分線交于一點,這點叫做三角形的外心,外心到三角形三個頂點的距離相等. 【高效演練】 1.如圖所示,在△ABC中,點P是△ABC的內心,則∠PBC+∠PCA+∠PAB=   度. 2.設為的重心,且,,,則的面積為  

3、 . 【解析】由,,,有, 知兩中線,垂直. 于是. 【答案】18 3.已知、分別為銳角的垂心和外心,,垂足為,則________. 【解析】可延長交的外接圓于,證明四邊形為平行四邊形即可. 【答案】2∶1 4. 如圖,正方形ABCD的對角線AC、BD相交于點O,在OB上任取一點P,連結AP,過D作AP垂線 交OA于Q點. 求證:OP=OQ. 【解析】 在△APD中,由AO⊥PD,DQ⊥AP可知,點Q是△APD的垂心,連結PQ,必有PQ⊥AD. ∵AB⊥AD,∴PQ∥BA, ∴ 又∵OA=OB,∴OP=OQ. 5. 如圖3,在△ABC中,AB=AC,過

4、BC的中點D作DE⊥AC于點E,G是DE的中點, 求證:AG⊥BE. 6.求證:三角形的三條高交于一點. 已知 中,AD與BE交于H點. 求證 . 證明 以CH為直徑作圓, 在以CH為直徑的圓上, . 同理,E、D在以AB為直徑的圓上,可得. , 又與有公共角,,即. 7.(1)設G是△ABC的重心,證明:△GBC,△GAC,△GAB的面積相等. (2)利用(1)的結論,證明:三角形頂點到重心的距離,等于重心到對邊中點的距離的2倍. 【分析】(1)設三條中線為AD,BE,CF,三中線交于G點,G是重心,由同底等高得到S△GBC=2S△

5、GCD,S△GAC=2S△GCD,由此能證明△GBC,△GAC,△GAB的面積相等. (2)設三條中線為AD,BE,CF,三中線交于G點,G是重心,由S△GBC=S△GAC,S△GBC=2S△GCD,得到S△GAC=2S△GCD,由此能證明三角形頂點到重心的距離,等于重心到對邊中點的距離的2倍. (2)證明:設三條中線為AD,BE,CF,三中線交于G點,G是重心, ∵△GBC,△GAC,△GAB的面積相等, ∴S△GBC=S△GAC, ∵BD=CD,∴S△GBC=2S△GCD, ∴S△GAC=2S△GCD, ∵△AGC和△DGC在分別以AG和DG為底時,高都是點C到邊AD的距

6、離, ∴AG=2GD,同理可證CG=2GF,BG=2GE, ∴三角形頂點到重心的距離,等于重心到對邊中點的距離的2倍. 【點評】本題考查三角形面積相等的證明,考查三角形重心定理的證明,解題時要注意三角形面積公式的合理運用 8.已知三角形的三邊a,b,c,三角形的重心到外接圓的距離為d,外接圓半徑為R,求證:a2+b2+c2+9d2=9R2. 【分析】以△ABC的外心為原點建立坐標系,可令A、B、C的坐標依次是:(Rcosα,Rsinα)、(Rcosβ,Rsinβ)、(Rcosγ,Rsinγ).令AB中點為D、△ABC的重心為G(m,n),求出m,n,進而可證明a2+b2+c2+9d2

7、=9R2. 于是: a2=(Rcosβ﹣Rcosγ)2+(Rsinβ﹣Rsinγ)2=R2(2﹣2cosβcosγ﹣2sinβsinγ) b2=(Rcosα﹣Rcosγ)2+(Rsinα﹣Rsinγ)2=R2(2﹣2cosαcosγ﹣2sinαsinγ), c2=(Rcosα﹣Rcosβ)2+(Rsinα﹣Rsinβ)2=R2(2﹣2cosαcosβ﹣2sinαsinβ). 9d2=9[(m﹣0)2+(n﹣0)2]=9{[R(cosα+cosβ+cosγ)﹣0]2+[R(sinα+sinβ+sinγ)﹣0]2} =R2[(cosα+cosβ+cosγ)2+(sinα+sinβ+

8、sinγ)2] =R2(3+2cosαcosβ+2cosβcosγ+2cosαcosγ+2sinαsinβ+2sinβsinγ+2sinαsinγ). ∴a2+b2+c2+9d2=9R2. 9.一條直線截三角形,把周長與面積分為對應的兩部分:與,與. 求證:直線過三角形內心的充要條件是. 【解析】證明: 必要性:如圖1,設是的內心,過的直線交于,交于. 記,, ,,, 內切圓半徑為,則, . 由,有. 充分性:設直線把的周長與面積分為對應的兩部分成等比, 且與交于,與交,與的平分線交于. 記,,,,, 到,的距離為,到的距離為. 由得 注意到,從而有,即, 故為的內心,即直線過內心. 6

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!