秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 5 立體幾何教學(xué)案 理

上傳人:彩*** 文檔編號:104775068 上傳時間:2022-06-11 格式:DOC 頁數(shù):14 大?。?70KB
收藏 版權(quán)申訴 舉報 下載
2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 5 立體幾何教學(xué)案 理_第1頁
第1頁 / 共14頁
2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 5 立體幾何教學(xué)案 理_第2頁
第2頁 / 共14頁
2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 5 立體幾何教學(xué)案 理_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 5 立體幾何教學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《2018版高考數(shù)學(xué)二輪復(fù)習(xí) 第3部分 考前增分策略 專題1 考前教材重溫 5 立體幾何教學(xué)案 理(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 5.立體幾何 ■要點重溫…………………………………………………………………………· 1.幾何體的三視圖排列規(guī)則:俯視圖放在正視圖下面,側(cè)視圖放在正視圖右面,“長對正,高平齊,寬相等.” 由幾何體的三視圖確定幾何體時,要注意以下幾點: (1)還原后的幾何體一般為較熟悉的柱、錐、臺、球的組合體. (2)注意圖中實、虛線,實際是原幾何體中的可視線與被遮擋線. (3)想象原形,并畫出草圖后進行三視圖還原,把握三視圖和幾何體之間的關(guān)系,與所給三視圖比較,通過調(diào)整準確畫出原幾何體. [應(yīng)用1] “牟合方蓋”是我國古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個和諧優(yōu)美的幾何體.它由完全相同

2、的四個曲面構(gòu)成,相對的兩個曲面在同一個圓柱的側(cè)面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖11,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其主視圖和側(cè)視圖完全相同時,它的俯視圖可能是(  ) 圖11 [解析] 俯視圖是正方形,曲線在其上面的投影恰為正方形的對角線,故選B. [答案] B 2.空間幾何體表面積和體積的求法 幾何體的表面積是各個面的面積之和,組合體的表面積應(yīng)注意重合部分的處理,求幾何體的體積常用公式法、割補法、等積變換法. [應(yīng)用2] 如圖12所示,一個空間幾何體的正視圖和俯視圖都是邊長為1的正方形,側(cè)視圖是一個直徑為1的

3、圓,那么這個幾何體的表面積為(  ) 【導(dǎo)學(xué)號:07804184】 圖12 A.4π    B.3π C.2π D.π [答案] D [應(yīng)用3] 如圖13,在四棱錐P-ABCD中,底面ABCD是平行四邊形,點E,F(xiàn)為PA,PD的中點,則平面BCFE將四棱錐P-ABCD所分成的上下兩部分的體積的比值為________. 圖13 [解析] 設(shè)棱錐的底面ABCD的面積為S,高為h,VP-ABCD=Sh, ∵VF-BDC=·S△DBC·=··=Sh,同理VP-ADB=··h=Sh, 由于四棱錐B-ADFE和三棱錐B-PAD等高,而=, 所以VB-ADFE=·Sh=Sh,所

4、以下半部分的體積為Sh,上半部分的體積為Sh-Sh=Sh,所以上下兩部分體積之比為. [答案]  3.多面體與球接、切問題的求解策略 (1)涉及球與棱柱、棱錐的接、切問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)接、外切的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解. (2)若球面上四點P,A,B,C構(gòu)成的三條線段PA,PB,PC兩兩互相垂直,且PA=a,PB=b,PC=c,一般把有關(guān)元素“補形”成為一個球內(nèi)接長方體,則4R2=a2+b2+c

5、2求解. [應(yīng)用4] 一個球與一個正三棱柱的三個側(cè)面和兩個底面都相切,已知這個球的體積是,那么這個三棱柱的體積是(  ) A.96 B.16 C.24 D.48 [解析] 如圖,設(shè)球的半徑為R,由πR3=,得R=2. 所以正三棱柱的高h=4. 設(shè)其底面邊長為a,則·a=2, 所以a=4, 所以V=×(4)2×4=48. [答案] D [應(yīng)用5] 已知三棱錐A-BCD內(nèi)接于球O,且BC=BD=CD=2,若三棱錐A-BCD體積的最大值為4,則球O的表面積為(  ) 【導(dǎo)學(xué)號:07804185】 A.16π B.25π C.36π D.64π [解析] 如圖,當(dāng)三棱

6、錐的體積最大值為4,即××(2)2××h=4,解得h=4,點A在如圖所示的位置時,三棱錐的體積最大,即AO′=4,并且在如圖所示的三角形中,OA=OC=R,OO′=4-R,O′C=2×=2,所以在直角三角形OO′C中,R2=(4-R)2+22,解得R=,球的表面積為S=4πR2=25π,故選B. [答案] B 4.空間平行問題的轉(zhuǎn)化關(guān)系 平行問題的核心是線線平行,證明線線平行的常用方法有:三角形的中位線、平行線分線段成比例(三角形相似)、平行四邊形等. [應(yīng)用6] 下列命題正確的序號是________. (1)如果a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面.

7、(2)如果直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行. (3)如果直線a,b和平面α滿足a∥α,b∥α,那么a∥b. (4)如果直線a,b和平面α滿足a∥b,a∥α,b?α,那么b∥α. [答案] (4) 5.空間垂直問題的轉(zhuǎn)化關(guān)系 垂直問題的核心是線線垂直,證明線線垂直的常用方法有:等腰三角形底邊上的中線、勾股定理、平面幾何方法等. [應(yīng)用7] 已知兩個平面垂直,下列命題 ①一個平面內(nèi)已知直線必垂直于另一個平面內(nèi)的任意一條直線; ②一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線; ③一個平面內(nèi)的任一條直線必垂直于另一個平面; ④過一個平面內(nèi)任意一點作交線

8、的垂線,則此垂線必垂直于另一個平面. 其中正確命題的個數(shù)是(  ) A.3 B.2 C.1 D.0 [答案] B 6.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”. [應(yīng)用8] (1)如圖14(1),在Rt△ABC中,∠ABC=90°,∠BAC=60°,AB=2,D、E分別為AC、BD的中點,連接AE并延長交BC于F,將△ABD沿BD折起,使平面ABD⊥平面BCD,如圖14(2)所示. 圖14(1)       圖14(2) (1)求證:AE⊥平面BCD; (2)求平面AEF與平面ADC所成的銳二面角的余弦值; (3

9、)在線段AF上是否存在點M使得EM∥平面ADC?若存在,請指出點M的位置;若不存在,說明理由. [解] (1)證明:在Rt△ABC中,∠ABC=90°,D為AC的中點,∴AD=BD=DC, 又∠BAC=60°,所以三角形ABD為等邊三角形; 又E為BD的中點,∴AE⊥BD. 因為平面ABD⊥平面BCD,交線為BD,AE?平面ABD,所以AE⊥平面BCD. (2)由AE⊥平面BCD可知.AE⊥EF.由題意知EF⊥BD,AE⊥BD,故以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz. 由(1)得,AB=BD=DC=AD=2,BE=ED=

10、1, 計算得AE=,BC=2,BF=, 則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,), F,C(,2,0), 則=(,1,0),=(0,1,-), 易知平面AEF的一個法向量為=(0,1,0). 設(shè)平面ADC的法向量為n=(x,y,z),則 ,即, 令z=1,得y=,x=-1,∴n=(-1,,1). cos〈n,〉==. 所以平面AEF與平面ADC所成的銳二面角的余弦值為 (3)設(shè)=λ,其中λ∈[0,1], ∵=,∴=λ=λ,其中λ∈[0,1], =+=,由·n=0,解得λ=∈(0,1). 所以在線段AF上存在點M,使EM∥平面ADC,且

11、AM∶AF=3∶4. 7. “轉(zhuǎn)化法”求空間角 (1)設(shè)兩條異面直線a,b所成的角為θ,兩條直線的方向向量分別為a,b. 因為θ∈,故有cos θ=|cos〈a,b〉|=||. (2)設(shè)直線l和平面α所成的角為θ,l是斜線l的方向向量,n是平面α的法向量,則sin θ=|cos〈l,n〉|=||. (3)設(shè)二面角α-l-β的大小為θ,n1,n2是二面角α-l-β的兩個半平面的法向量,則|cos θ|=|cos〈n1,n2〉|,兩個角之間的關(guān)系需要根據(jù)二面角的取值范圍來確定. [應(yīng)用9] 在三棱錐P-ABC中,AB⊥BC,AB=BC=PA,點O,D分別是AC,PC的中點,OP⊥底面A

12、BC,求直線PA與平面PBC所成角的正弦值. [解] ∵OP⊥平面ABC,OA=OC,AB=BC, ∴OA⊥OB,OA⊥OP,OB⊥OP. 以O(shè)為原點,射線OP為z軸正方向,OA為x軸正方向,OB為y軸正方向,建立空間直角坐標系O-xyz(如圖). 設(shè)AB=a, 則A,B,C, 設(shè)OP=h,則P(0,0,h),由PA=AB,則PA=2a, 則P=,=. 可求得平面PBC的一個法向量為n=, ∴cos〈,n〉==, 設(shè)PA與平面PBC所成的角為θ, 則sin θ=|cos〈,n〉|=. 8.求點到平面的距離的方法 (1)“等積法”:求解點到面的距離常轉(zhuǎn)化為錐體的高,

13、利用三棱錐體積公式求點到平面的距離. (2)“向量法”:如圖,設(shè)P在平面α外,n為平面α的法向量,在平面α內(nèi)任取一點Q,則點P到平面α的距離d=. 圖15 [應(yīng)用10] 正方體ABCD-A1B1C1D1的棱長為1,O是底面A1B1C1D1的中心,則點O到平面ABC1D1的距離為________. 【導(dǎo)學(xué)號:07804186】 [解析] 建立如圖所示的空間直角坐標系, 則A(1,0,0),B(1,1,0),D1(0,0,1),C1(0,1,1),O. 設(shè)平面ABC1D1的法向量為 n=(x,y,z), 則∴令z=1,得 ∴n=(1,0,1),又=, ∴O到平面AB

14、C1D1的距離d===. [答案]  ■查缺補漏…………………………………………………………………………· 1.已知m,n為空間中兩條不同的直線,α,β為空間中兩個不同的平面,下列命題中正確的是(  ) A.若m∥α,m∥β,則α∥β B.若m⊥α,m⊥n,則n∥α C.若m∥α,m∥n,則n∥α D.若m⊥α,m∥β,則α⊥β D [對于選項A,若m∥α,m∥β,則可能α,β相交,或者α∥β,所以選項A不正確;對于選項B,若m⊥α,m⊥n,則可能n?α,或n∥α,所以選項B不正確;對于選項C,若m∥α,m∥n,則n?α,或n∥α,所以選項C不正確;對于選項D,若m⊥α,m∥β

15、,則由線面平行可得在平面β內(nèi)存在一條直線l,使得m∥l,然后由m⊥α可得l⊥α,進而得出α⊥β,故選D.] 2. 一個四面體的頂點在空間直角坐標系O-xyz中的坐標分別是,(1,1,0),,(1,0,1),畫該四面體三視圖中的正視圖時,以yOz平面為投影面,則得到的正視圖可以為(  ) A [由圖可得,故選A. ] 3.如圖16,在正方體ABCD-A1B1C1D1中,M,N,P,Q分別是AA1,A1D1,CC1,BC的中點,給出以下四個結(jié)論:①A1C⊥MN;②A1C∥平面MNPQ;③A1C與PM相交;④NC與PM異面.其中不正確的結(jié)論是(  ) 圖16 A.① B.

16、② C.③ D.④ B [作出過M,N,P,Q四點的截面交C1D1于點S,交AB于點R,如圖中的六邊形MNSPQR,顯然點A1,C分別位于這個平面的兩側(cè),故A1C與平面MNPQ一定相交,不可能平行,故結(jié)論②不正確.] 4.如圖17,網(wǎng)格紙上小正方形的邊長為1,粗線或虛線畫出某幾何體的三視圖,該幾何體的體積為(  ) 【導(dǎo)學(xué)號:07804187】 圖17 A.8 B.12 C.18 D.24 B [由題意得,根據(jù)給定的三視圖可知,該幾何體為如圖所示的幾何體,是一個三棱錐與三棱柱的組合體,其中三棱錐的體積為V1=××4×3×2=4,三棱柱的體積為V2=2V1=2×

17、4=8,所以該幾何體的體積為V=12,故選B.] 5.如圖18,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的是(  ) 圖18 A.PB⊥AD B.平面PAB⊥平面PBC C.直線BC∥平面PAE D.直線PD與平面ABC所成的角為45° D [若PB⊥AD,則AD⊥AB,但AD與AB成60°角,A錯誤;平面PAB與平面ABD垂直,所以平面PAB一定不與平面PBC垂直,B錯誤;BC與AE是相交直線,所以BC一定不與平面PAE平行,C錯誤;直線PD與平面ABC所成角為∠PDA,在Rt△PAD中,AD=PA,所以∠PDA=45°

18、,D正確.] 6.設(shè)三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,∠BCA=90°,BC=CA=2,若該棱柱的所有頂點都在體積為的球面上,則直線B1C與直線AC1所成角的余弦值為(  ) A.- B. C.- D. B [由已知,若棱柱的所有頂點都在球面上,則同高的長方體8個頂點也在球面上,且外接球的直徑為長方體的體對角線,由球體體積可得直徑為4,由于長方體底面為邊長為2的正方形,故側(cè)面的對角線為2,由余弦定理可知,直線B1C與直線AC1所成角的余弦值為=.] 7.三棱錐P-ABC中,AB=BC=,AC=6,PC⊥平面ABC,PC=2,則該三棱錐外接球的表面積為(  ) A.π B.

19、π C.π D.π D [由題意可知,△ABC中AC邊上的高為=,球心O在底面ABC的投影即為△ABC的外心D,設(shè)DA=DB=DC=x,∴x2=32+2,解得x=,∴R2=x2+=+1=(其中R為三棱錐外接球的半徑),∴外接球的表面積S=4πR2=π,故選D.] 8.在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為________. 【導(dǎo)學(xué)號:07804188】  [過點C作CE垂直AD所在直線于點E,梯形ABCD繞AD所在直線旋轉(zhuǎn)一周而形成的旋轉(zhuǎn)體是由以線段AB的長為底面圓半徑,線段B

20、C為母線的圓柱挖去以線段CE的長為底面圓半徑,ED為高的圓錐,如圖所示,該幾何體的體積為V=V圓柱-V圓錐=π·AB2·BC-·π·CE2·DE=π×12×2-×12×1=.] 9.如圖19,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=,AA1=3,M為線段BB1上的一動點,則過A,M,C1三點的平面截該三棱柱所得截面的最小周長為________. 圖19 3+ [由圖形可知,當(dāng)AM+MC1最小時,所得截面的周長最小,如圖所示把平面A1ABB1與平面C1CBB1展開成一個平面AA1C1C,則AM+MC1最短為AC1==3,所以截面的最小周長為3+=3+.] 10.在

21、封閉的直三棱柱ABC-A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是________. π [由題意得要使球的體積最大,則球與直三棱柱的若干面相切,設(shè)球的半徑為R,∵△ABC的內(nèi)切圓半徑為=2,∴△ABC的內(nèi)切球半徑為2,∴R≤2,又2R≤5, 即R≤,∴取交集R≤2,∴Vmax=π×23=π.] 11.如圖20,四棱錐P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形. 圖20 (1)證明:PB⊥CD; (2)求二面角A-PD-B的余弦值. [解] (1)證明:如圖,取BC的中點E,連接

22、DE,則ADEB為正方形,過P作PO⊥平面ABCD,垂足為O, 連接OA,OB,OE,OD,則由△PAB和△PAD都是等邊三角形可知PA=PB=PD,∴OA=OB=OD, 即點O為正方形ADEB對角線的交點, 故OE⊥BD,從而OE⊥平面PBD, ∴OE⊥PB,∵O是BD的中點,E是BC的中點, ∴OE∥CD,因此PB⊥CD. (2)由(1)可知,OE,OB,OP兩兩垂直, 以O(shè)為原點,OE方向為x軸正方向,OB方向為y軸正方向,OP方向為z軸正方向,建立如圖所示的空間直角坐標系O-xyz,設(shè)AB=2,則A(-,0,0),D(0,-,0),P(0,0,), =(,-,0

23、),=(,0,), 設(shè)平面PAD的法向量n=(x,y,z), n·=x-y=0,n·=x+z=0, 取x=1,得y=1,z=-1,得n=(1,1,-1), ∵OE⊥平面PBD,設(shè)平面PBD的法向量為m,取m=(1,0,0), 由圖象可知二面角A-PD-B的大小為銳角, ∴二面角A-PD-B的余弦值為 cos θ===. 12.已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1⊥底面ABC. 圖21 (1)若M,N分別是AB,A1C的中點,求證:MN∥平面BCC1B1. (2)若三棱柱ABC-A1B1C1的各棱長均為2,側(cè)棱BB1與底面ABC所成的角為60°.問:在線段A

24、1C1上是否存在一點P,使得平面B1CP⊥平面ACC1A1?若存在,求C1P與PA1的比值;若不存在,說明理由. [解] (1)證明:連接AC1,BC1,則AN=NC1, ∵AM=MB, ∴MN∥BC1. 又∵BC1?平面BCC1B1, ∴MN∥平面BCC1B1. (2)作B1O⊥BC于O, ∵面BCC1B1⊥底面ABC,∴B1O⊥面ABC. 以O(shè)為原點,建立如上圖所示的空間直角坐標系,則A(0,,0),B(-1,0,0),C(1,0,0)B1(0,0,). 由==可求出A1(1,,),C1(2,0,). 設(shè)P(x,y,z),=λ, 解得P, 則=,=(-1,0,). 設(shè)平面B1CP的法向量為n1=(x,y,z), 由 解得n1=. 同理可求出平面ACC1A1的法向量n2=(,1,-1). 由面B1CP⊥平面ACC1A1,得n1·n2=0,即3+-1=0解得,λ=3,所以A1C1=3A1P,從而C1P∶PA1=2. 14

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!