2022年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版
《2022年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版 一.課標要求: 1.導數(shù)及其應用 (1)導數(shù)概念及其幾何意義 ① 通過對大量實例的分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念的實際背景,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內(nèi)涵; ②通過函數(shù)圖像直觀地理解導數(shù)的幾何意義。 (2)導數(shù)的運算 ① 能根據(jù)導數(shù)定義求函數(shù)y=c,y=x,y=x2,y=x3,y=1/x,y=x 的導數(shù); ② 能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù),能求簡單的復合函數(shù)(僅限于形如f(ax+b))的導數(shù); ③ 會使用導數(shù)公式表。
2、 (3)導數(shù)在研究函數(shù)中的應用 ① 結(jié)合實例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導數(shù)的關(guān)系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間; ② 結(jié)合函數(shù)的圖像,了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求不超過三次的多項式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過三次的多項式函數(shù)最大值、最小值;體會導數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性。 (4)生活中的優(yōu)化問題舉例 例如,使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用。 (5)定積分與微積分基本定理 ① 通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的
3、實際背景;借助幾何直觀體會定積分的基本思想,初步了解定積分的概念; ② 通過實例(如變速運動物體在某段時間內(nèi)的速度與路程的關(guān)系),直觀了解微積分基本定理的含義。 (6)數(shù)學文化 收集有關(guān)微積分創(chuàng)立的時代背景和有關(guān)人物的資料,并進行交流;體會微積分的建立在人類文化發(fā)展中的意義和價值。具體要求見本《標準》中"數(shù)學文化"的要求。 二.命題走向 導數(shù)是高中數(shù)學中重要的內(nèi)容,是解決實際問題的強有力的數(shù)學工具,運用導數(shù)的有關(guān)知識,研究函數(shù)的性質(zhì):單調(diào)性、極值和最值是高考的熱點問題。在高考中考察形式多種多樣,以選擇題、填空題等主觀題目的形式考察基本概念、運算及導數(shù)的應用,也經(jīng)常以解答題形式和其它數(shù)
4、學知識結(jié)合起來,綜合考察利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值,估計xx年高考繼續(xù)以上面的幾種形式考察不會有大的變化: (1)考查形式為:選擇題、填空題、解答題各種題型都會考察,選擇題、填空題一般難度不大,屬于高考題中的中低檔題,解答題有一定難度,一般與函數(shù)及解析幾何結(jié)合,屬于高考的中低檔題; (2)07年高考可能涉及導數(shù)綜合題,以導數(shù)為數(shù)學工具考察:導數(shù)的物理意義及幾何意義,復合函數(shù)、數(shù)列、不等式等知識。 定積分是新課標教材新增的內(nèi)容,主要包括定積分的概念、微積分基本定理、定積分的簡單應用,由于定積分在實際問題中非常廣泛,因而07年的高考預測會在這方面考察,預測07年高考呈現(xiàn)以下幾個特點
5、: (1)新課標第1年考察,難度不會很大,注意基本概念、基本性質(zhì)、基本公式的考察及簡單的應用;高考中本講的題目一般為選擇題、填空題,考查定積分的基本概念及簡單運算,屬于中低檔題; (2)定積分的應用主要是計算面積,諸如計算曲邊梯形的面積、變速直線運動等實際問題要很好的轉(zhuǎn)化為數(shù)學模型。 三.要點精講 1.導數(shù)的概念 函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應地有增量=f(x+)-f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。 如果當時,有極限,我們就說函數(shù)y=f(x)在點x處可導,并把這個極限叫做f(x)在點x處的導數(shù),記作f’(x)或y’|。
6、 即f(x)==。 說明: (1)函數(shù)f(x)在點x處可導,是指時,有極限。如果不存在極限,就說函數(shù)在點x處不可導,或說無導數(shù)。 (2)是自變量x在x處的改變量,時,而是函數(shù)值的改變量,可以是零。 由導數(shù)的定義可知,求函數(shù)y=f(x)在點x處的導數(shù)的步驟(可由學生來歸納): (1)求函數(shù)的增量=f(x+)-f(x); (2)求平均變化率=; (3)取極限,得導數(shù)f’(x)=。 2.導數(shù)的幾何意義 函數(shù)y=f(x)在點x處的導數(shù)的幾何意義是曲線y=f(x)在點p(x,f(x)) 處的切線的斜率。也就是說,曲線y=f(x)在點p(x,f(x))處的切線的斜率是f’(x)
7、。相應地,切線方程為y-y=f/(x)(x-x)。 3.常見函數(shù)的導出公式. ?。ǎ保–為常數(shù)) ?。ǎ玻? ?。ǎ常 。ǎ矗? 4.兩個函數(shù)的和、差、積的求導法則 法則1:兩個函數(shù)的和(或差)的導數(shù),等于這兩個函數(shù)的導數(shù)的和(或差), 即: ( 法則2:兩個函數(shù)的積的導數(shù),等于第一個函數(shù)的導數(shù)乘以第二個函數(shù),加上第一個 函數(shù)乘以第二個函數(shù)的導數(shù),即: 若C為常數(shù),則.即常數(shù)與函數(shù)的積的導數(shù)等于常數(shù)乘以函數(shù)的導數(shù): 法則3兩個函數(shù)的商的導數(shù),等于分子的導數(shù)與分母的積,減去分母的導數(shù)與分子的積,再除以分母的平方:‘=(v0)。 形如y=f的函數(shù)稱為復合函數(shù)。
8、復合函數(shù)求導步驟:分解——求導——回代。法則:y'|= y'| ·u'| 5.導數(shù)的應用 (1)一般地,設函數(shù)在某個區(qū)間可導,如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內(nèi)恒有,則為常數(shù); (2)曲線在極值點處切線的斜率為0,極值點處的導數(shù)為0;曲線在極大值點左側(cè)切線的斜率為正,右側(cè)為負;曲線在極小值點左側(cè)切線的斜率為負,右側(cè)為正; (3)一般地,在區(qū)間[a,b]上連續(xù)的函數(shù)f在[a,b]上必有最大值與最小值。①求函數(shù)?在(a,b)內(nèi)的極值; ②求函數(shù)?在區(qū)間端點的值?(a)、?(b); ③將函數(shù)? 的各極值與?(a)、?(b)比較,其中最大的是最大值,其中最小的是最小值。 6.
9、定積分
(1)概念
設函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0 10、nx+C;=-cosx+C(表中C均為常數(shù))。
(2)定積分的性質(zhì)
①(k為常數(shù));
②;
③(其中a<c<b。
(3)定積分求曲邊梯形面積
由三條直線x=a,x=b(a
11、是瞬時速度。
解析:(1)指時間改變量;
指時間改變量。
。
其余各段時間內(nèi)的平均速度,事先刻在光盤上,待學生回答完第一時間內(nèi)的平均速度后,即用多媒體出示,讓學生思考在各段時間內(nèi)的平均速度的變化情況。
(2)從(1)可見某段時間內(nèi)的平均速度隨變化而變化,越小,越接近于一個定值,由極限定義可知,這個值就是時,的極限,
V==
=(6+=3g=29.4(米/秒)。
例2.求函數(shù)y=的導數(shù)。
解析:,
,
=-。
點評:掌握切的斜率、 瞬時速度,它門都是一種特殊的極限,為學習導數(shù)的定義奠定基礎(chǔ)。
題型2:導數(shù)的基本運算
例3.(1)求的導數(shù);
(2)求的 12、導數(shù);
(3)求的導數(shù);
(4)求y=的導數(shù);
(5)求y=的導數(shù)。
解析:(1),
(2)先化簡,
(3)先使用三角公式進行化簡.
(4)y’==;
(5)y=-x+5-
y’=3*(x)'-x'+5'-9)'=3*-1+0-9*(-)=。
點評:(1)求導之前,應利用代數(shù)、三角恒等式等變形對函數(shù)進行化簡,然后求導,這樣可以減少運算量,提高運算速度,減少差錯;(2)有的函數(shù)雖然表面形式為函數(shù)的商的形式,但在求導前利用代數(shù)或三角恒等變形將函數(shù)先化簡,然后進行求導.有時可以避免使用商的求導法則,減少運算量。
例4.寫出由下列函數(shù)復合而成的函數(shù):
(1)y 13、=cosu,u=1+ (2)y=lnu, u=lnx
解析:(1)y=cos(1+);
(2)y=ln(lnx)。
點評:通過對y=(3x-2展開求導及按復合關(guān)系求導,直觀的得到=..給出復合函數(shù)的求導法則,并指導學生閱讀法則的證明。
題型3:導數(shù)的幾何意義
例5.(1)(06安徽卷)若曲線的一條切線與直線垂直,則的方程為( )
A. B. C. D.
(2)(06全國II)過點(-1,0)作拋物線的切線,則其中一條切線為( )
(A) (B) (C) (D)
解析:(1)與直線垂直的直線為,即在某一點 14、的導數(shù)為4,而,所以在(1,1)處導數(shù)為4,此點的切線為,故選A;
(2),設切點坐標為,則切線的斜率為2,且,于是切線方程為,因為點(-1,0)在切線上,可解得=0或-4,代入可驗正D正確,選D。
點評:導數(shù)值對應函數(shù)在該點處的切線斜率。
例6.(1)(06湖北卷)半徑為r的圓的面積S(r)=r2,周長C(r)=2r,若將r看作(0,+∞)上的變量,則(r2)`=2r ,式可以用語言敘述為:圓的面積函數(shù)的導數(shù)等于圓的周長函數(shù)。對于半徑為R的球,若將R看作(0,+∞)上的變量,請你寫出類似于的式子: ;式可以用語言敘述為: 15、 。
(2)(06湖南卷)曲線和在它們交點處的兩條切線與軸所圍成的三角形面積是 。
解析:(1)V球=,又 故式可填,用語言敘述為“球的體積函數(shù)的導數(shù)等于球的表面積函數(shù)?!?;
(2)曲線和在它們的交點坐標是(1,1),兩條切線方程分別是y=-x+2和y=2x-1,它們與軸所圍成的三角形的面積是。
點評:導數(shù)的運算可以和幾何圖形的切線、面積聯(lián)系在一起,對于較復雜問題有很好的效果。
題型4:借助導數(shù)處理單調(diào)性、極值和最值
例7.(1)(06江西卷)對于R上可導的任意函數(shù)f(x),若滿足(x- 16、1)30,則必有( )
A.f(0)+f(2)<2f(1) B. f(0)+f(2)£2f(1)
C.f(0)+f(2)32f(1) D. f(0)+f(2)>2f(1)
(2)(06天津卷)函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點( )
A.1個 B.2個 C.3個 D. 4個
(3)(06全國卷I)已知函數(shù)。(Ⅰ)設,討論的單調(diào)性;(Ⅱ)若對任意恒有,求的取值范圍。
解析:(1)依題意,當x31時,f¢(x)30,函數(shù)f(x)在( 17、1,+¥)上是增函數(shù);當x<1時,f¢(x)£0,f(x)在(-¥,1)上是減函數(shù),故f(x)當x=1時取得最小值,即有f(0)3f(1),f(2)3f(1),故選C;
(2)函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖象如圖所示,函數(shù)在開區(qū)間內(nèi)有極小值的點即函數(shù)由減函數(shù)變?yōu)樵龊瘮?shù)的點,其導數(shù)值為由負到正的點,只有1個,選A。
(3):(Ⅰ)f(x)的定義域為(-∞,1)∪(1,+∞).對f(x)求導數(shù)得 f '(x)= e-ax。
(ⅰ)當a=2時, f '(x)= e-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).為增 18、函數(shù);
(ⅱ)當00, f(x)在(-∞,1), (1,+∞)為增函數(shù).;
(ⅲ)當a>2時, 0<<1, 令f '(x)=0 ,解得x1= - , x2= ;
當x變化時, f '(x)和f(x)的變化情況如下表:
x
(-∞, -)
(-,)
(,1)
(1,+∞)
f '(x)
+
-
+
+
f(x)
↗
↘
↗
↗
f(x)在(-∞, -), (,1), (1,+∞)為增函數(shù), f(x)在(-,)為減函數(shù)。
(Ⅱ)(ⅰ)當0f(0)=1;
(ⅱ)當a 19、>2時, 取x0= ∈(0,1),則由(Ⅰ)知 f(x0) 20、區(qū)間;(Ⅱ)討論f(x)的極值。
解析:(1),令可得x=0或2(2舍去),當-1£x<0時,>0,當0 21、際問題的能力。
題型5:導數(shù)綜合題
例9.(06廣東卷)設函數(shù)分別在處取得極小值、極大值.平面上點的坐標分別為、,該平面上動點滿足,點是點關(guān)于直線的對稱點.求
(I)求點的坐標;
(II)求動點的軌跡方程.
解析: (Ⅰ)令解得;
當時,, 當時,,當時,。
所以,函數(shù)在處取得極小值,在取得極大值,故,。
所以, 點A、B的坐標為。
(Ⅱ) 設,,
,
,所以。
又PQ的中點在上,所以,消去得。
點評:該題是導數(shù)與平面向量結(jié)合的綜合題。
例10.(06湖南卷)已知函數(shù),數(shù)列{}滿足:證明:(ⅰ);(ⅱ)。
證明: (I).先用數(shù)學歸納法證明,n=1,2,3,…
22、 (i).當n=1時,由已知顯然結(jié)論成立。
(ii).假設當n=k時結(jié)論成立,即。
因為0 23、它下部的形狀是高為1m的正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如右圖所示)。試問當帳篷的頂點O到底面中心的距離為多少時,帳篷的體積最大?
本小題主要考查利用導數(shù)研究函數(shù)的最大值和最小值的基礎(chǔ)知識,以及運用數(shù)學知識解決實際問題的能力。
解析:設OO1為x m,則由題設可得正六棱錐底面邊長為(單位:m)。
于是底面正六邊形的面積為(單位:m2):
。
帳篷的體積為(單位:m3):
求導數(shù),得;
令解得x=-2(不合題意,舍去),x=2。
當1 24、篷的體積最大。
點評:結(jié)合空間幾何體的體積求最值,理解導數(shù)的工具作用。
例12.(06浙江卷)已知函數(shù)f(x)=x+ x,數(shù)列|x|(x>0)的第一項x=1,以后各項按如下方式取定:曲線x=f(x)在處的切線與經(jīng)過(0,0)和(x,f (x))兩點的直線平行(如圖)求證:當n時,
(Ⅰ)x
(Ⅱ)。
證明:(I)因為所以曲線在處的切線斜率
因為過和兩點的直線斜率是所以.
(II)因為函數(shù)當時單調(diào)遞增,而
,
所以,即因此
又因為令則
因為所以
因此 故
點評:本題主要考查函數(shù)的導數(shù)、數(shù)列、不等式等基礎(chǔ)知識,以及不等式的證明,同時考查邏輯推理能力。
題型7 25、:定積分
例13.計算下列定積分的值
(1);(2);(3);(4);
解析:(1)
(2)因為,所以;
(3)
(4)
例14.(1)一物體按規(guī)律x=bt3作直線運動,式中x為時間t內(nèi)通過的距離,媒質(zhì)的阻力正比于速度的平方.試求物體由x=0運動到x=a時,阻力所作的功。
(2)拋物線y=ax2+bx在第一象限內(nèi)與直線x+y=4相切.此拋物線與x軸所圍成的圖形的面積記為S.求使S達到最大值的a、b值,并求Smax.
解析:(1)物體的速度。
媒質(zhì)阻力,其中k為比例常數(shù),k>0。
當x=0時,t=0;當x=a時,,
又ds=vdt,故阻力所作的功為:
( 26、2)依題設可知拋物線為凸形,它與x軸的交點的橫坐標分別為x1=0,x2=-b/a,所以(1)
又直線x+y=4與拋物線y=ax2+bx相切,即它們有唯一的公共點,
由方程組
得ax2+(b+1)x-4=0,其判別式必須為0,即(b+1)2+16a=0.
于是代入(1)式得:
,;
令S'(b)=0;在b>0時得唯一駐點b=3,且當0<b<3時,S'(b)>0;當b>3時,S'(b)<0.故在b=3時,S(b)取得極大值,也是最大值,即a=-1,b=3時,S取得最大值,且。
點評:應用好定積分處理平面區(qū)域內(nèi)的面積。
五.思維總結(jié)
1.本講內(nèi)容在高考中以填空題和解答題為主
主要考查:
(1)函數(shù)的極限;
(2)導數(shù)在研究函數(shù)的性質(zhì)及在解決實際問題中的應用;
(3)計算曲邊圖形的面積和旋轉(zhuǎn)體的體積。
2.考生應立足基礎(chǔ)知識和基本方法的復習,以課本題目為主,以熟練技能,鞏固概念為目標。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工重大危險源安全管理制度
- 安全培訓資料:典型建筑火災的防治基本原則與救援技術(shù)
- 企業(yè)雙重預防體系應知應會知識問答
- 8 各種煤礦安全考試試題
- 9 危險化學品經(jīng)營單位安全生產(chǎn)管理人員模擬考試題庫試卷附答案
- 加壓過濾機司機技術(shù)操作規(guī)程
- 樹脂砂混砂工藝知識總結(jié)
- XXXXX現(xiàn)場安全應急處置預案
- 某公司消防安全檢查制度總結(jié)
- 1 煤礦安全檢查工(中級)職業(yè)技能理論知識考核試題含答案
- 4.燃氣安全生產(chǎn)企業(yè)主要負責人模擬考試題庫試卷含答案
- 工段(班組)級安全檢查表
- D 氯化工藝作業(yè)模擬考試題庫試卷含答案-4
- 建筑起重司索信號工安全操作要點
- 實驗室計量常見的30個問問答題含解析