秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2022-2023版高中數(shù)學 第三章 統(tǒng)計案例 3.1 回歸分析的基本思想及其初步應(yīng)用學案 新人教A版選修2-3

上傳人:xt****7 文檔編號:105599178 上傳時間:2022-06-12 格式:DOC 頁數(shù):20 大小:604KB
收藏 版權(quán)申訴 舉報 下載
2022-2023版高中數(shù)學 第三章 統(tǒng)計案例 3.1 回歸分析的基本思想及其初步應(yīng)用學案 新人教A版選修2-3_第1頁
第1頁 / 共20頁
2022-2023版高中數(shù)學 第三章 統(tǒng)計案例 3.1 回歸分析的基本思想及其初步應(yīng)用學案 新人教A版選修2-3_第2頁
第2頁 / 共20頁
2022-2023版高中數(shù)學 第三章 統(tǒng)計案例 3.1 回歸分析的基本思想及其初步應(yīng)用學案 新人教A版選修2-3_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022-2023版高中數(shù)學 第三章 統(tǒng)計案例 3.1 回歸分析的基本思想及其初步應(yīng)用學案 新人教A版選修2-3》由會員分享,可在線閱讀,更多相關(guān)《2022-2023版高中數(shù)學 第三章 統(tǒng)計案例 3.1 回歸分析的基本思想及其初步應(yīng)用學案 新人教A版選修2-3(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022-2023版高中數(shù)學 第三章 統(tǒng)計案例 3.1 回歸分析的基本思想及其初步應(yīng)用學案 新人教A版選修2-3 學習目標 1.了解隨機誤差、殘差、殘差圖的概念.2.會通過分析殘差判斷線性回歸模型的擬合效果.3.掌握建立線性回歸模型的步驟. 知識點一 線性回歸模型 思考 某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)如下表: 推銷員編號 1 2 3 4 5 工作年限x/年 3 5 6 7 9 推銷金額y/萬元 2 3 3 4 5 請問如何表示推銷金額y與工作年限x之間的相關(guān)關(guān)系?y關(guān)于x的線性回歸方程是什么? 答案 畫出散點圖,由圖

2、可知,樣本點散布在一條直線附近,因此可用回歸直線表示變量之間的相關(guān)關(guān)系. 設(shè)所求的線性回歸方程為=x+, 則===0.5, =-=0.4. 所以年推銷金額y關(guān)于工作年限x的線性回歸方程為=0.5x+0.4. 梳理 (1)函數(shù)關(guān)系是一種確定性關(guān)系,而相關(guān)關(guān)系是一種非確定性關(guān)系. (2)回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法. (3)對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),回歸直線y=bx+a的斜率和截距的最小二乘估計公式分別為==,=- ,其中(,)稱為樣本點的中心. (4)線性回歸模型y=bx+a+e,其中a和

3、b是模型的未知參數(shù),e稱為隨機誤差,自變量x稱為解釋變量,因變量y稱為預(yù)報變量. 知識點二 線性回歸分析 具有相關(guān)關(guān)系的兩個變量的線性回歸方程為=x+. 思考1 預(yù)報變量與真實值y一樣嗎? 答案 不一定. 思考2 預(yù)報值與真實值y之間誤差大了好還是小了好? 答案 越小越好. 梳理 (1)殘差平方和法 ①i=y(tǒng)i-i=y(tǒng)i-xi- (i=1,2,…,n)稱為相應(yīng)于點(xi,yi)的殘差. ②殘差平方和(yi-i)2越小,模型的擬合效果越好. (2)殘差圖法 殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適.這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程

4、的預(yù)報精度越高. (3)利用相關(guān)指數(shù)R2刻畫回歸效果 其計算公式為:R2=1-,其幾何意義:R2越接近于1,表示回歸的效果越好. 知識點三 建立回歸模型的基本步驟 1.確定研究對象,明確哪個變量是解釋變量,哪個變量是預(yù)報變量. 2.畫出解釋變量和預(yù)報變量的散點圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等). 3.由經(jīng)驗確定回歸方程的類型(如觀察到數(shù)據(jù)呈線性關(guān)系,則選用線性回歸方程). 4.按一定規(guī)則(如最小二乘法)估計回歸方程中的參數(shù). 5.得出結(jié)果后分析殘差圖是否有異常(如個別數(shù)據(jù)對應(yīng)殘差過大,殘差呈現(xiàn)不隨機的規(guī)律性等).若存在異常,則檢查數(shù)據(jù)是否有誤,或模型是否合適等.

5、 1.求線性回歸方程前可以不進行相關(guān)性檢驗.( × ) 2.在殘差圖中,縱坐標為殘差,橫坐標可以選為樣本編號.( √ ) 3.利用線性回歸方程求出的值是準確值.( × ) 類型一 求線性回歸方程 例1 某研究機構(gòu)對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù): x 6 8 10 12 y 2 3 5 6 (1)請畫出上表數(shù)據(jù)的散點圖; (2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+; (3)試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學的判斷力. 考點 線性回歸方程 題點 求線性回歸方程 解 (1)如圖:

6、 (2)iyi=6×2+8×3+10×5+12×6=158, ==9, ==4, =62+82+102+122=344, ===0.7, =-=4-0.7×9=-2.3, 故線性回歸方程為=0.7x-2.3. (3)由(2)中線性回歸方程可知,當x=9時,=0.7×9-2.3=4,預(yù)測記憶力為9的同學的判斷力約為4. 反思與感悟 (1)求線性回歸方程的基本步驟 ①列出散點圖,從直觀上分析數(shù)據(jù)間是否存在線性相關(guān)關(guān)系. ②計算:,,,,iyi. ③代入公式求出=x+中參數(shù),的值. ④寫出線性回歸方程并對實際問題作出估計. (2)需特別注意的是,只有在散點圖大致呈線性時

7、,求出的回歸方程才有實際意義,否則求出的回歸方程毫無意義. 跟蹤訓練1 假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計數(shù)據(jù): x 2 3 4 5 6 y 2.2 3.8 5.5 6.5 7.0 由此資料可知y對x呈線性相關(guān)關(guān)系. (1)求線性回歸方程; (2)求使用年限為10年時,該設(shè)備的維修費用為多少? 考點 線性回歸方程 題點 求線性回歸方程 解 (1)由上表中的數(shù)據(jù)可得 =4,=5,=90,iyi=112.3, ∴= ==1.23, ∴=-=5-1.23×4=0.08. ∴線性回歸方程為=1.23x+0.08.

8、 (2)當x=10時,=1.23×10+0.08=12.38. 即使用年限為10年時,該設(shè)備的維修費用約為12.38萬元. 類型二 回歸分析 例2 在一段時間內(nèi),某種商品的價格x元和需求量y件之間的一組數(shù)據(jù)為: x 14 16 18 20 22 y 12 10 7 5 3 求出y對x的線性回歸方程,并說明擬合效果的程度. 考點 殘差分析與相關(guān)指數(shù) 題點 殘差及相關(guān)指數(shù)的應(yīng)用 解 =(14+16+18+20+22)=18, =(12+10+7+5+3)=7.4. =142+162+182+202+222=1 660, iyi=14×12+16

9、×10+18×7+20×5+22×3=620, 可得回歸系數(shù)= ==-1.15, 所以=7.4+1.15×18=28.1, 所以線性回歸方程為=-1.15x+28.1. 列出殘差表: yi-i 0 0.3 -0.4 -0.1 0.2 yi- 4.6 2.6 -0.4 -2.4 -4.4 則(yi-i)2=0.3,(yi-)2=53.2. R2=1-≈0.994. 所以回歸模型的擬合效果很好. 反思與感悟 (1)該類題屬于線性回歸問題,解答此類題應(yīng)先通過散點圖來分析兩變量間的關(guān)系是否線性相關(guān),然后再利用求回歸方程的公式求解回歸方程,并利用殘差圖或相關(guān)

10、指數(shù)R2來分析函數(shù)模型的擬合效果,在此基礎(chǔ)上,借助線性回歸方程對實際問題進行分析. (2)刻畫回歸效果的三種方法 ①殘差圖法,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi)說明選用的模型比較合適. ②殘差平方和法:殘差平方和(yi-i)2越小,模型的擬合效果越好. ③相關(guān)指數(shù)法:R2=1-越接近1,表明回歸的效果越好. 跟蹤訓練2 關(guān)于x與y有如下數(shù)據(jù): x 2 4 5 6 8 y 30 40 60 50 70 有如下的兩個線性模型:(1)=6.5x+17.5;(2)=7x+17.試比較哪一個擬合效果更好. 考點 殘差分析與相關(guān)指數(shù) 題點 殘差及相關(guān)指數(shù)的應(yīng)用

11、 解 由(1)可得yi-i與yi-的關(guān)系如下表: yi-i -0.5 -3.5 10 -6.5 0.5 yi- -20 -10 10 0 20 ∴(yi-i)2=(-0.5)2+(-3.5)2+102+(-6.5)2+0.52=155, (yi-)2=(-20)2+(-10)2+102+02+202=1 000. ∴R=1-=1-=0.845. 由(2)可得yi-i與yi-的關(guān)系如下表: yi-i -1 -5 8 -9 -3 yi- -20 -10 10 0 20 ∴(yi-i)2=(-1)2+(-5)2+82+(-9)2+(

12、-3)2=180, (yi-)2=(-20)2+(-10)2+102+02+202=1 000. ∴R=1-=1-=0.82. 由于R=0.845,R=0.82,0.845>0.82, ∴R>R. ∴(1)的擬合效果好于(2)的擬合效果. 例3 某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值. (xi-)2 (wi-)2 (xi-) ·(yi-) (wi-)

13、·(yi-) 46.6 563 6.8 289.8 1.6 1 469 108.8 表中wi=,=i. (1)根據(jù)散點圖判斷,y=a+bx與y=c+d哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由) (2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程; (3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題: ①年宣傳費x=49時,年銷售量及年利潤的預(yù)報值是多少? ②年宣傳費x為何值時,年利潤的預(yù)報值最大? 附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸

14、直線v=α+βu的斜率和截距的最小二乘估計分別為 =,=- . 考點 非線性回歸分析 題點 非線性回歸分析 解 (1)由散點圖可以判斷,y=c+d適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型. (2)令w=,先建立y關(guān)于w的線性回歸方程. 由于===68, =-=563-68×6.8=100.6, 所以y關(guān)于w的線性回歸方程為=100.6+68w, 因此y關(guān)于x的回歸方程為=100.6+68. (3)①由(2)知,當x=49時, 年銷售量y的預(yù)報值=100.6+68=576.6, 年利潤z的預(yù)報值=576.6×0.2-49=66.32. ②根據(jù)(2)的結(jié)果知,年利潤

15、z的預(yù)報值 =0.2(100.6+68)-x=-x+13.6+20.12. 所以當==6.8, 即x=46.24時,取得最大值. 故年宣傳費為46.24千元時,年利潤的預(yù)報值最大. 反思與感悟 求非線性回歸方程的步驟 (1)確定變量,作出散點圖. (2)根據(jù)散點圖,選擇恰當?shù)臄M合函數(shù). (3)變量置換,通過變量置換把非線性回歸問題轉(zhuǎn)化為線性回歸問題,并求出線性回歸方程. (4)分析擬合效果:通過計算相關(guān)指數(shù)或畫殘差圖來判斷擬合效果. (5)根據(jù)相應(yīng)的變換,寫出非線性回歸方程. 跟蹤訓練3 在一次抽樣調(diào)查中測得樣本的5個樣本點,數(shù)值如下表: x 0.25 0.5 1

16、 2 4 y 16 12 5 2 1 試建立y與x之間的回歸方程. 考點 非線性回歸分析 題點 非線性回歸分析 解 由數(shù)值表可作散點圖如圖, 根據(jù)散點圖可知y與x近似地呈反比例函數(shù)關(guān)系, 設(shè)=,令t=,則=kt,原數(shù)據(jù)變?yōu)椋? t 4 2 1 0.5 0.25 y 16 12 5 2 1 由置換后的數(shù)值表作散點圖如下: 由散點圖可以看出y與t呈近似的線性相關(guān)關(guān)系,列表如下: i ti yi tiyi t 1 4 16 64 16 2 2 12 24 4 3 1 5 5 1 4 0.

17、5 2 1 0.25 5 0.25 1 0.25 0.062 5 ∑ 7.75 36 94.25 21.312 5 所以=1.55,=7.2. 所以=≈4.134 4, =-≈0.8. 所以=4.134 4t+0.8. 所以y與x之間的回歸方程是=+0.8. 1.下列兩個變量之間的關(guān)系不是函數(shù)關(guān)系的是(  ) A.角度和它的余弦值 B.正方形的邊長和面積 C.正n邊形的邊數(shù)和內(nèi)角度數(shù)和 D.人的年齡和身高 考點 回歸分析 題點 回歸分析的概念和意義 答案 D 解析 函數(shù)關(guān)系就是變量之間的一種確定性關(guān)系.A,B,C三項中的兩個變量之間

18、都是函數(shù)關(guān)系,可以寫出相應(yīng)的函數(shù)表達式,分別為f(θ)=cos θ,g(a)=a2,h(n)=(n-2)π.D選項中的兩個變量之間不是函數(shù)關(guān)系,對于年齡確定的人群,仍可以有不同的身高,故選D. 2.設(shè)有一個線性回歸方程=2-1.5x,當變量x增加1個單位時(  ) A.y平均增加1.5個單位 B.y平均增加2個單位 C.y平均減少1.5個單位 D.y平均減少2個單位 考點 線性回歸分析 題點 線性回歸方程的應(yīng)用 答案 C 解析 由回歸方程中兩個變量之間的關(guān)系可以得到. 3.如圖四個散點圖中,適合用線性回歸模型擬合其中兩個變量的是(  ) A.①② B.①③ C

19、.②③ D.③④ 考點 回歸分析 題點 回歸分析的概念和意義 答案 B 解析 由圖易知①③兩個圖中樣本點在一條直線附近,因此適合用線性回歸模型. 4.某產(chǎn)品在某零售攤位的零售價x(單位:元)與每天的銷售量y(單位:個)的統(tǒng)計資料如下表所示: x 16 17 18 19 y 50 34 41 31 由上表可得回歸直線方程=x+中的=-5,據(jù)此模型預(yù)測當零售價為14.5元時,每天的銷售量為(  ) A.51個 B.50個 C.54個 D.48個 考點 線性回歸分析 題點 線性回歸方程的應(yīng)用 答案 C 解析 由題意知=17.5,=

20、39,代入回歸直線方程得=126.5,126.5-14.5×5=54,故選C. 5.已知x,y之間的一組數(shù)據(jù)如下表: x 0 1 2 3 y 1 3 5 7 (1)分別計算:,,x1y1+x2y2+x3y3+x4y4,x+x+x+x; (2)已知變量x與y線性相關(guān),求出線性回歸方程. 考點 線性回歸方程 題點 求線性回歸方程 解 (1)==1.5,==4, x1y1+x2y2+x3y3+x4y4=0×1+1×3+2×5+3×7=34, x+x+x+x=02+12+22+32=14. (2)==2, =- =4-2×1.5=1, 故線性回歸方程為=2

21、x+1. 回歸分析的步驟: (1)確定研究對象,明確哪個變量是解釋變量,哪個變量是預(yù)報變量; (2)畫出確定好的解釋變量和預(yù)報變量的散點圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等); (3)由經(jīng)驗確定回歸方程的類型(如果呈線性關(guān)系,則選用線性回歸方程=x+); (4)按一定規(guī)則估算回歸方程中的參數(shù); (5)得出結(jié)果后分析殘差圖是否有異常(個別數(shù)據(jù)對應(yīng)的殘差過大,或殘差呈現(xiàn)不隨機的規(guī)律性等),若存在異常,則檢查數(shù)據(jù)是否有誤或模型是否合適等. 一、選擇題 1.對于線性回歸方程=x+ (>0),下列說法錯誤的是(  ) A.當x增加一個單位時,的值平均增加個單位 B.點

22、(,)一定在=x+所表示的直線上 C.當x=t時,一定有y=t+ D.當x=t時,y的值近似為t+ 考點 線性回歸分析 題點 線性回歸方程的應(yīng)用 答案 C 解析 線性回歸方程是一個模擬函數(shù),它表示的是一系列離散的點大致所在直線的位置及其大致變化規(guī)律,所以有些散點不一定在回歸直線上. 2.給定x與y的一組樣本數(shù)據(jù),求得相關(guān)系數(shù)r=-0.690,則(  ) A.y與x的線性相關(guān)性很強 B.y與x的相關(guān)性很強 C.y與x正相關(guān) D.y與x負相關(guān) 考點 線性相關(guān)系數(shù) 題點 線性相關(guān)系數(shù)的應(yīng)用 答案 D 解析 因為r<0,所以y與x負相關(guān),又|r|∈[0.75,1]才表示

23、y與x具有很強的線性相關(guān)性,所以選D. 3.某校小賣部為了了解奶茶銷售量y(杯)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4天賣出的奶茶杯數(shù)與當天的氣溫,得到下表中的數(shù)據(jù),并根據(jù)該樣本數(shù)據(jù)用最小二乘法建立了線性回歸方程=-2x+60,則樣本數(shù)據(jù)中污損的數(shù)據(jù)y0應(yīng)為(  ) 氣溫x(℃) -1 13 10 18 杯數(shù)y y0 34 38 24 A.58 B.64 C.62 D.60 考點 線性回歸分析 題點 線性回歸方程的應(yīng)用 答案 B 解析 由表中數(shù)據(jù)易知=10,代入=-2x+60中,得=40.由=40,得y0=64. 4.已知變量x與y負相關(guān),且由觀測

24、數(shù)據(jù)求得樣本平均數(shù)=3,=3.5,則由該觀測數(shù)據(jù)求得的線性回歸方程可能是(  ) A.=-2x+9.5 B.=2x-2.4 C.=-0.3x-4.4 D.=0.4x+2.3 考點 線性回歸方程 題點 求線性回歸方程 答案 A 解析 因為變量x與y負相關(guān),所以排除B,D,將樣本平均數(shù)=3,=3.5代入選項驗證可知,選項A符合題意. 5.對變量x,y進行回歸分析時,依據(jù)得到的4個不同的回歸模型畫出殘差圖,則下列模型擬合精度最高的是(  ) 考點 殘差分析與相關(guān)指數(shù) 題點 殘差及相關(guān)指數(shù)的應(yīng)用 答案 A 解析 用殘差圖判斷模型的擬合效果,殘差點比較均勻地落在水平

25、的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高. 6.根據(jù)如下樣本數(shù)據(jù) x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0 得到的回歸方程為=x+,則(  ) A.>0,>0 B.>0,<0 C.<0,>0 D.<0,<0 考點 線性回歸分析 題點 線性回歸方程的應(yīng)用 答案 B 解析 作出散點圖如下: 觀察圖象可知,回歸直線=x+的斜率<0, 當x=0時,=>0.故>0,<0. 7.已知某地的財政收入x與支出y滿足線性回歸方程y=bx+a+e(單位:億元),其中

26、b=0.8,a=2,|e|≤0.5,如果今年該地區(qū)的財政收入為10億元,那么年支出預(yù)計不會超過(  ) A.9億元 B.10億元 C.9.5億元 D.10.5億元 考點 殘差分析與相關(guān)指數(shù) 題點 殘差及相關(guān)指數(shù)的應(yīng)用 答案 D 解析 y=0.8×10+2+e=10+e≤10.5. 8.下列數(shù)據(jù)符合的函數(shù)模型為(  ) x 1 2 3 4 5 6 7 8 9 10 y 2 2.69 3 3.38 3.6 3.8 4 4.08 4.2 4.3 A.y=2+x B.y=2ex C.y=2 D.y=2+ln x 考點 非線

27、性回歸分析 題點 非線性回歸分析 答案 D 解析 分別將x值代入解析式判斷知滿足y=2+ln x. 9.為了考查兩個變量x和y之間的線性相關(guān)性,甲、乙兩位同學各自獨立地做了100次和150次試驗,并且利用最小二乘法求得的回歸直線分別為l1和l2.已知兩個人在試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,那么下列說法中正確的是(  ) A.l1與l2有交點(s,t) B.l1與l2相交,但交點不一定是(s,t) C.l1與l2必定平行 D.l1與l2必定重合 考點 線性回歸方程 題點 樣本點中心的應(yīng)用 答案 A 解析 回歸直線l1,l2都過

28、樣本點的中心(s,t),但它們的斜率不確定,故選項A正確. 二、填空題 10.在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散點圖中,若所有樣本點(xi,yi)(i=1,2,…,n)都在直線y=x+1上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為________. 考點 線性相關(guān)系數(shù) 題點 線性相關(guān)系數(shù)的應(yīng)用 答案 1 解析 根據(jù)樣本相關(guān)系數(shù)的定義可知,當所有樣本點都在一條直線上時,相關(guān)系數(shù)為1. 11.若一個樣本的總偏差平方和為80,殘差平方和為60,則相關(guān)指數(shù)R2為________. 考點 線性相關(guān)系數(shù) 題點 線性相關(guān)系數(shù)的

29、應(yīng)用 答案 0.25 解析 R2=1-=0.25. 12.已知一個線性回歸方程為=1.5x+45,x∈{1,5,7,13,19},則=________. 考點 線性回歸方程 題點 樣本點中心的應(yīng)用 答案 58.5 解析 ∵==9,且=1.5x+45, ∴=1.5×9+45=58.5. 13.在研究兩個變量的相關(guān)關(guān)系時,觀察散點圖發(fā)現(xiàn)樣本點集中于某一條指數(shù)曲線y=ebx+a的周圍.令=ln y,求得線性回歸方程為=0.25x-2.58,則該模型的回歸方程為________. 考點 非線性回歸分析 題點 非線性回歸分析 答案 y=e0.25x-2.58 解析 因為=0.2

30、5x-2.58,=ln y, 所以y=e0.25x-2.58. 三、解答題 14.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下: 零件的個數(shù)x(個) 2 3 4 5 加工的時間y(小時) 2.5 3 4 4.5 (1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖; (2)求出y關(guān)于x的線性回歸方程=x+,并在坐標系中畫出回歸直線; (3)試預(yù)測加工10個零件需要多少時間? (注:=,=-) 考點 線性回歸方程 題點 求線性回歸方程 解 (1)散點圖如圖. (2)由表中數(shù)據(jù)得iyi=52.5, =3.5,=

31、3.5,=54, 所以===0.7, 所以=- =3.5-0.7×3.5=1.05. 所以=0.7x+1.05. 回歸直線如圖中所示. (3)將x=10代入回歸直線方程,得=0.7×10+1.05=8.05, 所以預(yù)測加工10個零件需要8.05小時. 四、探究與拓展 15.甲、乙、丙、丁4位同學各自對A,B兩變量進行回歸分析,分別得到散點圖與殘差平方和(yi-i)2如下表: 甲 乙 丙 丁 散點圖 殘差平方和 115 106 124 103 以上的試驗結(jié)果體現(xiàn)擬合A,B兩變量關(guān)系的模型擬合精度高的是(  ) A.甲 B.乙 C

32、.丙 D.丁 考點 殘差分析與相關(guān)指數(shù) 題點 殘差及相關(guān)指數(shù)的應(yīng)用 答案 D 解析 根據(jù)線性相關(guān)的知識,散點圖中各樣本點條狀分布越均勻,同時保持殘差平方和越小(對于已經(jīng)獲取的樣本數(shù)據(jù),R2的表達式中(yi-)2為確定的數(shù),則殘差平方和越小,R2越大),由回歸分析建立的線性回歸模型的擬合效果越好,由試驗結(jié)果知丁要好些. 16.為了研究某種細菌隨時間x變化繁殖個數(shù)y的變化情況,收集數(shù)據(jù)如下: 時間x(天) 1 2 3 4 5 6 繁殖個數(shù)y 6 12 25 49 95 190 (1)用時間作解釋變量,繁殖個數(shù)作預(yù)報變量作出這些數(shù)據(jù)的散點圖; (2)求

33、y與x之間的回歸方程; (3)計算相關(guān)指數(shù)R2,并描述解釋變量與預(yù)報變量之間的關(guān)系. 考點 非線性回歸分析 題點 非線性回歸分析 解 (1)散點圖如圖所示: (2)由散點圖看出樣本點分布在一條指數(shù)曲線y=c1ec2x的周圍,于是令z=ln y,則 x 1 2 3 4 5 6 z 1.79 2.48 3.22 3.89 4.55 5.25 所以=0.69x+1.115,則有=e0.69x+1.115. (3) 6.08 12.12 24.17 48.18 96.06 191.52 y 6 12 25 49 95 190 =(yi-)2=4.816 1, (yi-)2≈-62≈24 642.83, R2=1-≈1-≈0.999 8, 即時間解釋了99.98%的細菌繁殖個數(shù)的變化.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!