《2022年高中數(shù)學(xué)(北師大版)選修1-2教案:第4章 拓展資料:解復(fù)系數(shù)方程應(yīng)該注意的幾個(gè)問(wèn)題》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué)(北師大版)選修1-2教案:第4章 拓展資料:解復(fù)系數(shù)方程應(yīng)該注意的幾個(gè)問(wèn)題(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
2022年高中數(shù)學(xué)(北師大版)選修1-2教案:第4章 拓展資料:解復(fù)系數(shù)方程應(yīng)該注意的幾個(gè)問(wèn)題
當(dāng)系數(shù)不全為實(shí)數(shù)時(shí),不可以用的正負(fù)來(lái)判斷其是否有實(shí)數(shù)根,但求根公式仍然可以使用.
1.注意能細(xì)致觀察系數(shù)為實(shí)數(shù)還是復(fù)數(shù)
例1:解方程.
錯(cuò)解:因?yàn)?,則,則由復(fù)數(shù)相等條件得到且,這兩式不可能同時(shí)成立,所以原方程無(wú)解.
剖析:上述解法是錯(cuò)誤的,其原因是默認(rèn)為實(shí)數(shù).
正解:設(shè),則,
即.則由復(fù)數(shù)相等的條件得到且,
則解得,,所以.
點(diǎn)評(píng):對(duì)于上述復(fù)系數(shù)方程,一定要看清題意,這樣才能正確解題.
練習(xí):解方程.答案:或.
2.掌握根的判別式與系數(shù)之間的聯(lián)系
例2:已知關(guān)于的方程有實(shí)
2、數(shù)根,求實(shí)數(shù)的取值范圍.
錯(cuò)解:因?yàn)榉匠逃袑?shí)數(shù)根,則有,
得到,則或.
剖析:上述解法將結(jié)論“實(shí)系數(shù)一元二次方程有實(shí)數(shù)”遷移到系數(shù)不全為實(shí)數(shù)的復(fù)系數(shù)一元二次方程上.這種思路是錯(cuò)誤的.
正解:∵方程有實(shí)數(shù)根,
∴當(dāng)時(shí),將原方程整理,得到.
再由復(fù)數(shù)相等的條件得到,且.
解得,或,所以實(shí)數(shù)為或.
點(diǎn)評(píng):對(duì)于系數(shù)不全為實(shí)數(shù)的復(fù)系數(shù)一元二次方程,當(dāng)時(shí),方程不一定有兩個(gè)相異的實(shí)數(shù)根.
練習(xí):解關(guān)于x的方程.答案:原方程的解為,.
3.熟悉系數(shù)不全為實(shí)數(shù)的復(fù)系數(shù)
例3:已知方程的兩根分別為、,且,求實(shí)數(shù)的值.
錯(cuò)解:,而由韋達(dá)定理知道,,所以,得到.
剖析:因?yàn)閿?shù)系的擴(kuò)充,絕對(duì)值的意義和性質(zhì)已經(jīng)發(fā)生了變化,當(dāng)為虛數(shù)時(shí),表示模,此時(shí),,.
因此當(dāng)為虛數(shù)時(shí),.
可見(jiàn)仍用實(shí)數(shù)范圍內(nèi)的結(jié)論解決復(fù)數(shù)問(wèn)題,是容易犯錯(cuò)誤的.
正解:(1)當(dāng),即時(shí),則,而由韋達(dá)定理知道,,所以,得到.
(2)當(dāng),即時(shí),設(shè)方程的一根為時(shí),則另一根為.
則由韋達(dá)定理有,則得到.
又,所以,所以,即的值是.
點(diǎn)評(píng):在考慮上述問(wèn)題時(shí)一定要細(xì)致和全面,才能把問(wèn)題完整求出.
練習(xí):已知方程有一根為,求的值.答案:.