(浙江專用版)2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.4.3 正切函數(shù)的性質(zhì)與圖象學(xué)案 新人教A版必修2
《(浙江專用版)2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.4.3 正切函數(shù)的性質(zhì)與圖象學(xué)案 新人教A版必修2》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用版)2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.4.3 正切函數(shù)的性質(zhì)與圖象學(xué)案 新人教A版必修2(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 1.4.3 正切函數(shù)的性質(zhì)與圖象 學(xué)習目標 1.會求正切函數(shù)y=tan(ωx+φ)的周期.2.掌握正切函數(shù)y=tan x的奇偶性,并會判斷簡單三角函數(shù)的奇偶性.3.掌握正切函數(shù)的單調(diào)性,并掌握其圖象的畫法. 知識點一 正切函數(shù)的性質(zhì) 思考1 正切函數(shù)的定義域是什么? 答案 . 思考2 誘導(dǎo)公式tan(π+x)=tan x,x∈R且x≠+kπ,k∈Z說明了正切函數(shù)的什么性質(zhì)? 答案 周期性. 思考3 誘導(dǎo)公式tan(-x)=-tan x,x∈R且x≠+kπ,k∈Z說明了正切函數(shù)的什么性質(zhì)? 答案 奇偶性. 思考4 從正切線上看,在上正切函數(shù)值是增大的嗎? 答案 是
2、. 梳理 函數(shù)y=tan x的圖象與性質(zhì)見下表: 解析式 y=tan x 圖象 定義域 值域 R 最小正周期 π 奇偶性 奇 單調(diào)性 在開區(qū)間(k∈Z)內(nèi)都是增函數(shù) 知識點二 正切函數(shù)的圖象 思考1 利用正切線作正切函數(shù)圖象的步驟是什么? 答案 根據(jù)正切函數(shù)的定義域和周期,首先作出區(qū)間上的圖象.作法如下: (1)作平面直角坐標系,并在平面直角坐標系y軸的左側(cè)作單位圓. (2)把單位圓的右半圓分成8等份,分別在單位圓中作出正切線. (3)描點(橫坐標是一個周期的8等分點,縱坐標是相應(yīng)的正切線的長度). (4)連線,得到如圖①所示的圖象.
3、 (5)根據(jù)正切函數(shù)的周期性,把上述圖象向左、右擴展,就可以得到正切函數(shù)y=tan x,x∈R且x≠+kπ(k∈Z)的圖象,把它稱為正切曲線(如圖②所示).可以看出,正切曲線是被相互平行的直線x=+kπ,k∈Z所隔開的無窮多支曲線組成的. 思考2 我們能用“五點法”簡便地畫出正弦函數(shù)、余弦函數(shù)的簡圖,你能類似地畫出正切函數(shù)y=tan x,x∈的簡圖嗎?怎樣畫? 答案 能,三個關(guān)鍵點:,(0,0),,兩條平行線:x=,x=-. 梳理 (1)正切函數(shù)的圖象 (2)正切函數(shù)的圖象特征 正切曲線是被相互平行的直線x=+kπ,k∈Z所隔開的無窮多支曲線組成的. 1.函數(shù)y=
4、tan x在其定義域上是增函數(shù).( × ) 提示 y=tan x在開區(qū)間(k∈Z)上是增函數(shù),但在其定義域上不是增函數(shù). 2.函數(shù)y=tan x的圖象的對稱中心是(kπ,0)(k∈Z).( × ) 提示 y=tan x圖象的對稱中心是(k∈Z). 3.正切函數(shù)y=tan x無單調(diào)遞減區(qū)間.( √ ) 4.正切函數(shù)在區(qū)間上單調(diào)遞增.( × ) 提示 正切函數(shù)在區(qū)間上是增函數(shù),不能寫成閉區(qū)間,當x=±時,y=tan x無意義. 類型一 正切函數(shù)的定義域、值域問題 例1 (1)函數(shù)y=3tan的定義域為________. 考點 正切函數(shù)的定義域、值域 題點 正切函數(shù)的定義域
5、 答案 解析 由-≠+kπ,k∈Z,得x≠--4kπ,k∈Z, 即函數(shù)的定義域為. (2)求函數(shù)y=tan2+tan+1的定義域和值域. 考點 正切函數(shù)的定義域、值域 題點 正切函數(shù)的值域 解 由3x+≠kπ+,k∈Z, 得x≠+,k∈Z, 所以函數(shù)的定義域為. 設(shè)t=tan, 則t∈R,y=t2+t+1=2+≥, 所以原函數(shù)的值域是. 反思與感悟 (1)求定義域時,要注意正切函數(shù)自身的限制條件,另外解不等式時,要充分利用三角函數(shù)的圖象或三角函數(shù)線. (2)處理正切函數(shù)值域時,應(yīng)注意正切函數(shù)自身值域為R,將問題轉(zhuǎn)化為某種函數(shù)的值域求解. 跟蹤訓(xùn)練1 求函數(shù)y=+l
6、g(1-tan x)的定義域.
考點 正切函數(shù)的定義域、值域
題點 正切函數(shù)的定義域
解 由題意得即-1≤tan x<1.
在內(nèi),滿足上述不等式的x的取值范圍是.
又y=tan x的周期為π,
所以函數(shù)的定義域是(k∈Z).
類型二 正切函數(shù)的單調(diào)性問題
命題角度1 求正切函數(shù)的單調(diào)區(qū)間
例2 求函數(shù)y=tan的單調(diào)區(qū)間及最小正周期.
考點 正切函數(shù)的單調(diào)性
題點 判斷正切函數(shù)的單調(diào)性
解 y=tan=-tan,
由kπ- 7、悟 y=tan(ωx+φ)(ω>0)的單調(diào)區(qū)間的求法是把ωx+φ看成一個整體,解-+kπ<ωx+φ<+kπ,k∈Z即可.當ω<0時,先用誘導(dǎo)公式把ω化為正值再求單調(diào)區(qū)間.
跟蹤訓(xùn)練2 (2017·太原高一檢測)求函數(shù)y=3tan的單調(diào)區(qū)間.
考點 正切函數(shù)的單調(diào)性
題點 判斷正切函數(shù)的單調(diào)性
解 y=3tan=-3tan,
由-+kπ<2x-<+kπ,k∈Z,得
-+ 8、__tan.
考點 正切函數(shù)的單調(diào)性
題點 正切函數(shù)的單調(diào)性的應(yīng)用
答案 (1)< (2)<
解析 (1)tan 215°=tan(180°+35°)=tan 35°,
∵y=tan x在(0°,90°)上單調(diào)遞增,32°<35°,
∴tan 32° 9、3 比較大?。簍an_______tan.
考點 正切函數(shù)的單調(diào)性
題點 正切函數(shù)的單調(diào)性的應(yīng)用
答案 >
解析 ∵tan=-tan=tan ,
tan=-tan=tan .
又0<<<,y=tan x在內(nèi)單調(diào)遞增,
∴tan <tan ,∴tan>tan.
類型三 正切函數(shù)綜合問題
例4 設(shè)函數(shù)f(x)=tan.
(1)求函數(shù)f(x)的最小正周期,對稱中心;
(2)作出函數(shù)f(x)在一個周期內(nèi)的簡圖.
考點 正切函數(shù)的綜合應(yīng)用
題點 正切函數(shù)的綜合應(yīng)用
解 (1)∵ω=,∴最小正周期T===2π.
令-=(k∈Z),得x=kπ+(k∈Z),
∴f(x)的對 10、稱中心是(k∈Z).
(2)令-=0,則x=;令-=,則x=;
令-=-,則x=;令-=,則x=;
令-=-,則x=-.
∴函數(shù)y=tan的圖象與x軸的一個交點坐標是,在這個交點左,右兩側(cè)相鄰的兩條漸近線方程分別是x=-,x=,從而得到函數(shù)y=f(x)在一個周期內(nèi)的簡圖(如圖).
反思與感悟 熟練掌握正切函數(shù)的圖象和性質(zhì)是解決正切函數(shù)綜合問題的關(guān)鍵,正切曲線是被相互平行的直線x=+kπ,k∈Z隔開的無窮多支曲線組成,y=tan x的對稱中心為,k∈Z.
跟蹤訓(xùn)練4 畫出f(x)=tan |x|的圖象,并根據(jù)其圖象判斷其單調(diào)區(qū)間、周期性、奇偶性.
考點 正切函數(shù)的綜合應(yīng)用
題 11、點 正切函數(shù)的綜合應(yīng)用
解 f(x)=tan |x|化為f(x)=
根據(jù)y=tan x的圖象,作出f(x)=tan |x|的圖象,如圖所示,
由圖象知,f(x)不是周期函數(shù),是偶函數(shù),單調(diào)增區(qū)間為,(k∈N);單調(diào)減區(qū)間為,(k=0,-1,-2,…).
1.函數(shù)f(x)=tan的單調(diào)遞增區(qū)間為( )
A.,k∈Z
B.(kπ,(k+1)π),k∈Z
C.,k∈Z
D.,k∈Z
考點 正切函數(shù)的單調(diào)性
題點 判斷正切函數(shù)的單調(diào)性
答案 C
2.函數(shù)y=tan x+是( )
A.奇函數(shù)
B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.既不是奇函數(shù)又不是偶函 12、數(shù)
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的奇偶性
答案 A
解析 函數(shù)的定義域是,且tan(-x)+=-tan x-=-,所以函數(shù)y=tan x+是奇函數(shù).
3.(2017·紹興柯橋區(qū)期末)函數(shù)y=3tan的最小正周期是( )
A. B.
C. D.5π
考點 正切函數(shù)的單調(diào)性
題點 正切函數(shù)單調(diào)性的應(yīng)用
答案 A
4.將tan 1,tan 2,tan 3按大小順序排列為________.(用“<”連接)
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的周期性
答案 tan 2 13、__________.
考點 正切函數(shù)的定義域、值域
題點 正切函數(shù)的值域
答案 (-∞,-1]∪[1,+∞)
解析 函數(shù)y=tan x在上單調(diào)遞增,在上也單調(diào)遞增,所以函數(shù)的值域是(-∞,-1]∪[1,+∞).
1.正切函數(shù)的圖象
正切函數(shù)有無數(shù)多條漸近線,漸近線方程為x=kπ+,k∈Z,相鄰兩條漸近線之間都有一支正切曲線,且單調(diào)遞增.
2.正切函數(shù)的性質(zhì)
(1)正切函數(shù)y=tan x的定義域是,值域是R.
(2)正切函數(shù)y=tan x的最小正周期是π,函數(shù)y=Atan(ωx+φ)(Aω≠0)的最小正周期為T=.
(3)正切函數(shù)在(k∈Z)上單調(diào)遞增,不能寫成閉區(qū)間, 14、正切函數(shù)無單調(diào)減區(qū)間.
一、選擇題
1.函數(shù)y=tan,x∈R且x≠π+kπ,k∈Z的一個對稱中心是( )
A.(0,0) B. C. D.(π,0)
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的對稱性
答案 C
2.函數(shù)f(x)=2tan(-x)是( )
A.奇函數(shù)
B.偶函數(shù)
C.奇函數(shù),也是偶函數(shù)
D.非奇非偶函數(shù)
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的奇偶性
答案 A
解析 因為f(-x)=2tan x=-2tan(-x)=-f(x),且f(x)的定義域關(guān)于原點對稱,所以函數(shù)f(x)=2tan(-x)是奇函數(shù).
3.已知函數(shù)y 15、=tan ωx在內(nèi)是減函數(shù),則( )
A.0<ω≤1 B.-1≤ω<0
C.ω≥1 D.ω≤-1
考點 正切函數(shù)的單調(diào)性
題點 正切函數(shù)單調(diào)性的應(yīng)用
答案 B
解析 ∵y=tan ωx在內(nèi)是減函數(shù),∴ω<0且T=≥π,∴-1≤ω<0.
4.下列各點中,不是函數(shù)y=tan的圖象的對稱中心的是( )
A. B.
C. D.
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的對稱性
答案 C
解析 令-2x=,k∈Z,得x=-.
令k=0,得x=;
令k=1,得x=-;
令k=2,得x=-.故選C.
5.函數(shù)f(x)=tan ωx (ω>0)的圖象 16、的相鄰兩支截直線y=所得的線段長為,則f的值是( )
A.0 B.1 C.-1 D.
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的周期性
答案 A
解析 由題意,得T==,∴ω=4.
∴f(x)=tan 4x,f=tan π=0.
6.函數(shù)y=tan x+sin x-|tan x-sin x|在區(qū)間內(nèi)的圖象是( )
考點 正切函數(shù)的圖象
題點 正切函數(shù)的圖象
答案 D
解析 當 17、山模擬)已知函數(shù)f(x)=,則下列說法正確的是( )
A.f(x)的周期是
B.f(x)的值域是{y|y∈R,且y≠0}
C.直線x=是函數(shù)f(x)圖象的一條對稱軸
D.f(x)的單調(diào)遞減區(qū)間是,k∈Z
考點 正切函數(shù)的綜合應(yīng)用
題點 正切函數(shù)的綜合應(yīng)用
答案 D
解析 函數(shù)f(x)的周期為2π,A錯;f(x)的值域為[0,+∞),B錯;當x=時,x-=≠,k∈Z,
∴x=不是f(x)的對稱軸,C錯;
令kπ- 18、最小正周期為2π,則f=________.
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的周期性
答案 1
解析 由已知=2π,所以ω=,
所以f(x)=tan,
所以f=tan=tan =1.
9.比較大小:tan________tan .
考點 正切函數(shù)的單調(diào)性
題點 正切函數(shù)單調(diào)性的應(yīng)用
答案 <
解析 tan=tan ,tan=tan ,
又y=tan x在內(nèi)單調(diào)遞增,
所以tan 19、值域
答案 [-4,4]
解析 ∵-≤x≤,∴-1≤tan x≤1.
令tan x=t,則t∈[-1,1],
∴y=-t2+4t+1=-(t-2)2+5.
∴當t=-1,即x=-時,ymin=-4,
當t=1,即x=時,ymax=4.
故所求函數(shù)的值域為[-4,4].
11.已知函數(shù)f(x),任意x1,x2∈(x1≠x2),給出下列結(jié)論:
①f(x+π)=f(x);②f(-x)=f(x);③f(0)=1;
④>0;⑤f>.
當f(x)=tan x時,正確結(jié)論的序號為________.
考點 正切函數(shù)的綜合應(yīng)用
題點 正切函數(shù)的綜合應(yīng)用
答案?、佗?
解析 由于f(x 20、)=tan x的周期為π,故①正確;函數(shù)f(x)=tan x為奇函數(shù),故②不正確;f(0)=tan 0=0,故③不正確;④表明函數(shù)為增函數(shù),而f(x)=tan x為區(qū)間上的增函數(shù),故④正確;⑤由函數(shù)f(x)=tan x的圖象可知,函數(shù)在區(qū)間上有f>,在區(qū)間上有f<,故⑤不正確.
三、解答題
12.判斷函數(shù)f(x)=lg的奇偶性.
考點 正切函數(shù)的周期性、對稱性
題點 正切函數(shù)的奇偶性
解 由>0,得tan x>1或tan x<-1.
∴函數(shù)定義域為∪(k∈Z),關(guān)于原點對稱.
f(-x)+f(x)=lg +lg
=lg=lg 1=0.
∴f(-x)=-f(x),∴f(x)是 21、奇函數(shù).
13.畫出函數(shù)y=|tan x|的圖象,并根據(jù)圖象判斷其單調(diào)區(qū)間、奇偶性、周期性.
考點 正切函數(shù)的綜合應(yīng)用
題點 正切函數(shù)的綜合應(yīng)用
解 由y=|tan x|,得
y=
其圖象如圖所示.
由圖象可知,函數(shù)y=|tan x|是偶函數(shù),
單調(diào)遞增區(qū)間為(k∈Z),
單調(diào)遞減區(qū)間為(k∈Z),周期為π.
四、探究與拓展
14.函數(shù)y=sin x與y=tan x的圖象在區(qū)間[0,2π]上交點的個數(shù)是多少?
考點 正切函數(shù)的圖象
題點 正切函數(shù)的圖象
解 因為當x∈時,tan x>x>sin x,
所以當x∈時,y=sin x與y=tan x沒有公共點,因此 22、函數(shù)y=sin x與y=tan x在區(qū)間[0,2π]內(nèi)的圖象如圖所示,
觀察圖象可知,函數(shù)y=tan x與y=sin x在區(qū)間[0,2π]上有3個交點.
15.設(shè)函數(shù)f(x)=tan(ωx+φ),已知函數(shù)y=f(x)的圖象與x軸相鄰兩個交點的距離為,且圖象關(guān)于點M對稱.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)求不等式-1≤f(x)≤的解集.
考點 正切函數(shù)的綜合應(yīng)用
題點 正切函數(shù)的綜合應(yīng)用
解 (1)由題意知,函數(shù)f(x)的最小正周期為T=,
即=.
因為ω>0,所以ω=2,
從而f(x)=tan(2x+φ).
因為函數(shù)y=f(x)的圖象關(guān)于點M對稱,
所以2×+φ=,k∈Z,
即φ=+,k∈Z.
因為0<φ<,所以φ=,
故f(x)=tan.
(2)令-+kπ<2x+<+kπ,k∈Z,
得-+kπ<2x
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。