秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)學(xué)案 新人教A版

上傳人:彩*** 文檔編號(hào):106992566 上傳時(shí)間:2022-06-14 格式:DOCX 頁數(shù):12 大?。?.31MB
收藏 版權(quán)申訴 舉報(bào) 下載
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)學(xué)案 新人教A版_第1頁
第1頁 / 共12頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)學(xué)案 新人教A版_第2頁
第2頁 / 共12頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)學(xué)案 新人教A版_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)學(xué)案 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第三章 導(dǎo)數(shù)及其應(yīng)用 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)學(xué)案 新人教A版(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性 【課程要求】 了解函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間及參數(shù)的范圍. 對應(yīng)學(xué)生用書p41 【基礎(chǔ)檢測】 1.判斷下列結(jié)論是否正確(請?jiān)诶ㄌ?hào)中打“√”或“×”) (1)若函數(shù)f(x)在(a,b)內(nèi)單調(diào)遞增,那么一定有f′(x)>0.(  ) (2)如果函數(shù)f(x)在某個(gè)區(qū)間內(nèi)恒有f′(x)=0,則f(x)在此區(qū)間內(nèi)沒有單調(diào)性.(  ) [答案] (1)× (2)√ 2.[選修2-2p32A組T4]如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是(  ) A.在區(qū)間(-2,1

2、)上,f(x)是增函數(shù) B.在區(qū)間(1,3)上,f(x)是減函數(shù) C.在區(qū)間(4,5)上,f(x)是增函數(shù) D.當(dāng)x=2時(shí),f(x)取到極小值 [解析]在(4,5)上f′(x)>0恒成立,∴f(x)是增函數(shù). [答案]C 3.[選修2-2p24例2]函數(shù)f(x)=x3-6x2的單調(diào)遞減區(qū)間為______________. [解析]f′(x)=3x2-12x=3x(x-4),由f′(x)<0,得0

3、           A.(-∞,-2] B.(-2,+∞) C.D. [解析]f′(x)=+2ax=,2ax2+1>0在內(nèi)恒成立,所以a>,由于x∈,所以x2∈,∈,所以a≥-. [答案]D 5.已知f(x)=1+x-sinx,則f(2),f(3),f(π)的大小關(guān)系正確的是(  ) A.f(2)>f(3)>f(π) B.f(3)>f(2)>f(π) C.f(2)>f(π)>f(3) D.f(π)>f(3)>f(2) [解析]f(x)=1+x-sinx,則f′(x)=1-cosx≥0, 則函數(shù)f(x)為增函數(shù). ∵2<3<π, ∴f(π)>f(3)

4、>f(2). [答案]D 6.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=3,且f(x)的導(dǎo)數(shù)f′(x)在R上恒有f′(x)<2(x∈R),則不等式f(x)<2x+1的解集為________________. [解析]令g(x)=f(x)-2x-1,∴g′(x)=f′(x)-2<0, ∴g(x)在R上為減函數(shù),g(1)=f(1)-2-1=0. 由g(x)<0=g(1),得x>1.∴不等式的解集為(1,+∞). [答案] (1,+∞) 【知識(shí)要點(diǎn)】 1.函數(shù)的單調(diào)性:在某個(gè)區(qū)間(a,b)內(nèi),如果f′(x)>0,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果f′(x)<0,那么

5、函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞減. 2.在某區(qū)間內(nèi)f′(x)>0(f′(x)<0)是函數(shù)f(x)在此區(qū)間上為增(減)函數(shù)的充分不必要條件. 3.可導(dǎo)函數(shù)f(x)在(a,b)上是增(減)函數(shù)的充要條件是對?x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子區(qū)間內(nèi)都不恒為零. 對應(yīng)學(xué)生用書p41 不含參數(shù)的函數(shù)的單調(diào)性 例1 (1)已知函數(shù)f(x)=xlnx,則f(x)(  )                    A.在上單調(diào)遞增 B.在上單調(diào)遞減 C.在上單調(diào)遞增 D.在上單調(diào)遞減 [解析]因?yàn)楹瘮?shù)f(x)=xlnx的定

6、義域?yàn)?0,+∞), 所以f′(x)=lnx+1(x>0), 當(dāng)f′(x)>0時(shí),解得x>,即函數(shù)的單調(diào)遞增區(qū)間為; 當(dāng)f′(x)<0時(shí),解得00的解集為__________. [解析]由題圖可知 不等式(x2-2x-3)f′(x)>0等價(jià)于或解得x∈(-∞,-1)∪(-1,1)∪(3,+∞). [答案] (-∞,-1)∪(-1,1)∪(3,+∞) [小結(jié)]確定函數(shù)單調(diào)區(qū)間的步驟: (1)確定函數(shù)f(x)的定義域. (2)求

7、f′(x). (3)解不等式f′(x)>0,解集在定義域內(nèi)的部分為單調(diào)遞增區(qū)間. (4)解不等式f′(x)<0,解集在定義域內(nèi)的部分為單調(diào)遞減區(qū)間. 1.已知定義在區(qū)間(-π,π)上的函數(shù)f(x)=xsinx+cosx,則f(x)的單調(diào)遞增區(qū)間是__________________________. [解析]f′(x)=sinx+xcosx-sinx=xcosx.令f′(x)=xcosx>0,則其在區(qū)間(-π,π)上的解集為∪,即f(x)的單調(diào)遞增區(qū)間為,. [答案], 2.已知函數(shù)f(x)=x2+2cosx,若f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)f′(x)的圖象大致是(  )

8、 [解析]設(shè)g(x)=f′(x)=2x-2sinx,g′(x)=2-2cosx≥0,所以函數(shù)f′(x)在R上單調(diào)遞增. [答案]A 含參數(shù)的函數(shù)的單調(diào)性 例2 已知函數(shù)f(x)=ex(ex-a)-a2x,討論f(x)的單調(diào)性. [解析]函數(shù)f(x)的定義域?yàn)?-∞,+∞), f′(x)=2e2x-aex-a2=(2ex+a)(ex-a). ①若a=0,則f(x)=e2x在(-∞,+∞)上單調(diào)遞增. ②若a>0,則由f′(x)=0,得x=lna. 當(dāng)x∈(-∞,lna)時(shí),f′(x)<0;當(dāng)x∈(lna,+∞)時(shí),f′(x)>0. 故f(x)在(-∞,lna)上單調(diào)遞減,

9、在(lna,+∞)上單調(diào)遞增. ③若a<0,則由f′(x)=0,得x=ln. 當(dāng)x∈時(shí),f′(x)<0; 當(dāng)x∈時(shí),f′(x)>0. 故f(x)在上單調(diào)遞減,在上單調(diào)遞增. 綜上,當(dāng)a=0時(shí),f(x)在(-∞,+∞)上單調(diào)遞增; 當(dāng)a>0時(shí),f(x)在(-∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增, 當(dāng)a<0時(shí),f(x)在上單調(diào)遞減,在上單調(diào)遞增. [小結(jié)]根據(jù)函數(shù)單調(diào)性求參數(shù)的一般思路:(1)利用集合間的包含關(guān)系處理:y=f(x)在(a,b)上單調(diào),則區(qū)間(a,b)是相應(yīng)單調(diào)區(qū)間的子集.(2)f(x)為增函數(shù)的充要條件是對任意的x∈(a,b)都有f′(x)≥0且在(

10、a,b)內(nèi)的任一非空子區(qū)間上,f′(x)不恒為零,應(yīng)注意此時(shí)式子中的等號(hào)不能省略,否則漏解.(3)函數(shù)在某個(gè)區(qū)間存在單調(diào)區(qū)間可轉(zhuǎn)化為不等式有解問題. 3.已知g(x)=+x2+2alnx在[1,2]上是減函數(shù),則實(shí)數(shù)a的取值范圍是______________. [解析]g′(x)=-+2x+,由已知得g′(x)≤0在[1,2]上恒成立,可得a≤-x2在[1,2]上恒成立.又當(dāng)x∈[1,2]時(shí),=-4=-.∴a≤-. [答案] 4.已知函數(shù)f(x)=-x2+4x-3lnx在區(qū)間[t,t+1]上不單調(diào),則t的取值范圍是____________. [解析]由題意知f′(x)=-x+4-

11、=-,由f′(x)=0,得函數(shù)f(x)的兩個(gè)極值點(diǎn)為1和3,則只要這兩個(gè)極值點(diǎn)有一個(gè)在區(qū)間(t,t+1)內(nèi),函數(shù)f(x)在區(qū)間[t,t+1]上就不單調(diào),由t<10,y=f′(x)為y=f(x)的導(dǎo)函數(shù),則(  ) A.8<<16B.4<<8 C.3<<4D.2<<3 [解析]∵xf′(x)-2f(x)>0,x>0, ∴′==>0, ∴y=在(0,+∞)

12、上單調(diào)遞增, ∴>,又f(x)>0,∴>4. ∵xf′(x)-3f(x)<0,x>0, ∴′==<0, ∴y=在(0,+∞)上單調(diào)遞減, ∴<,又f(x)>0,∴<8.綜上,4<<8. [答案]B (2)定義在R上的函數(shù)f(x)滿足f(x)+f′(x)>1,f(0)=4,則不等式exf(x)>ex+3(其中e為自然對數(shù)的底數(shù))的解集為(  ) A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(0,+∞) D.(3,+∞) [解析]令g(x)=exf(x)-ex,∴g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],∵f(

13、x)+f′(x)>1,∴g′(x)>0, ∴y=g(x)在定義域上單調(diào)遞增,∵exf(x)>ex+3,∴g(x)>3,∵g(0)=3,∴g(x)>g(0),∴x>0,故選A. [答案]A [小結(jié)]1.構(gòu)造函數(shù),應(yīng)用導(dǎo)數(shù)求解函數(shù)值的比較大小時(shí),若自變量的值不在同一個(gè)單調(diào)區(qū)間內(nèi),要利用其函數(shù)性質(zhì),轉(zhuǎn)化到同一個(gè)單調(diào)區(qū)間上進(jìn)行比較,對于選擇題、填空題能數(shù)形結(jié)合的盡量用圖象法求解. 2.構(gòu)造函數(shù),應(yīng)用導(dǎo)數(shù)求解不等式解集時(shí),先利用函數(shù)的相關(guān)性質(zhì)將不等式轉(zhuǎn)化為f(g(x))>f(h(x))的形式,再根據(jù)函數(shù)的單調(diào)性去掉“f”,得到一般的不等式g(x)>h(x)(或g(x)

14、知定義在上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對于任意的x∈,都有f′(x)sinxf B.f>f(1) C.fg, 即>,∴f>f. [答案]A 6.已知函數(shù)f(x)=x3-2x+ex-,其中e是自然對數(shù)的底數(shù).若f(a-1)+f(2a2)≤0,則實(shí)數(shù)a的取值范圍是__________. [解析]由f(x)=x3-2x+ex-,得f(-x)=-x3+2x+-ex=-f(x),所以f(x)是R上的奇函數(shù).又f′(x

15、)=3x2-2+ex+≥3x2-2+2=3x2≥0,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào), 所以f(x)在其定義域內(nèi)單調(diào)遞增.因?yàn)閒(a-1)+f(2a2)≤0,所以f(a-1)≤-f(2a2)=f(-2a2), 所以a-1≤-2a2,解得-1≤a≤,故實(shí)數(shù)a的取值范圍是. [答案] 函數(shù)單調(diào)性的綜合應(yīng)用問題 例4 已知函數(shù)f(x)=x3+xcosx-ax2-sinx-2acosx,g=2xcosx-x2-2sinx-3acosx(a為常數(shù),a∈R). (1)討論函數(shù)f的單調(diào)性; (2)設(shè)函數(shù)h(x)=f(x)-g(x),證明:當(dāng)00時(shí),h(x)>0. [解析] (1)f′(x

16、)=x2+cosx-xsinx-2ax-cosx+2asinx=(x-2a)(x-sinx), 令φ(x)=x-sinx,則φ′(x)=1-cosx≥0,故φ(x)在R上單調(diào)遞增,又φ(0)=0, 故x∈(-∞,0)時(shí)φ(x)<0,x∈(0,+∞)時(shí)φ(x)>0, 則令f′(x)=0,x1=2a,x2=0. (ⅰ)當(dāng)a<0時(shí),有x∈(-∞,2a)與x∈(0,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增; x∈(2a,0)時(shí),f′(x)<0,f(x)單調(diào)遞減; (ⅱ)當(dāng)a>0時(shí),有x∈(-∞,0)與x∈(2a,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增; x∈(0,2a)時(shí),f′(

17、x)<0,f(x)單調(diào)遞減; (ⅲ)當(dāng)a=0時(shí),有x∈R時(shí),f′(x)≥0,f(x)單調(diào)遞增. (2)h(x)=f(x)-g(x)=x3-xcosx-x2+sinx+acosx(00), h′(x)=x2-cosx+xsinx-ax+cosx-asinx=(x-a)(x+sinx), 令t(x)=x+sinx(x>0),則t′(x)=1+cosx≥0,故t(x)在(0,+∞)上單調(diào)遞增,又t(0)=0, 故t(x)>0,令h′(x)=0?x=a,且x∈(0,a)時(shí),h′(x)<0, h(x)單調(diào)遞減;x∈(a,+∞)時(shí),h′(x)>0,h(x)單調(diào)遞增;所以h(x)m

18、in=h(a)=a3-acosa-a3+sina+acosa=-a3+sina, 令m(a)=-a3+sina(0-+cos=0,∴m′(a)>0,m(a)在(0,1)上單調(diào)遞增,又m(0)=0, ∴m(a)>0在(0,1)上恒成立,所以當(dāng)00時(shí),h(x)>0. [小結(jié)]利用導(dǎo)數(shù)證明不等式的常用方法:證明f(x)

19、單調(diào)性證明. 7.已知函數(shù)f(x)=ax-lnx-(a∈R). (1)討論f(x)的單調(diào)區(qū)間. (2)若函數(shù)f(x)圖象的一條切線為x軸,且函數(shù)g(x)=,若存在不相等的兩個(gè)實(shí)數(shù)x1,x2滿足g(x1)=g(x2),求證:x1x2<1. [解析] (1)由題意:x>0,f′(x)=ax-=, 顯然:當(dāng)a≤0時(shí),f′(x)<0, 當(dāng)a>0時(shí),0,f′(x)>0, 故有:a≤0時(shí),f(x)在區(qū)間(0,+∞)上遞減;a>0時(shí),f(x)在區(qū)間上遞減,在區(qū)間上遞增. (2)設(shè)切點(diǎn)坐標(biāo)為(x0,0),? ∴g(x)=, 令h(x)=+--lnx,

20、∴h′(x)=++, 顯然:x≥1時(shí),h′(x)>0,又h′(x)=+, ∴00,∴x∈(0,+∞)上,h′(x)>0,故h(x)在(0,+∞)上遞增,而h(1)=0, ∴x∈(0,1)時(shí),h(x)<0,x∈(1,+∞)時(shí),h(x)>0, ∴g(x)= 且g(x)在(0,1)上遞減,在(1,+∞)上遞增,g(1)=0. 當(dāng)x>1時(shí),0<<1,令G(x)=g(x)-g=h(x)-=f(x)+f′(x)+f+f′, 故:G′(x)=f′(x)+f″(x)- =+- =(-1)++>0, 故:G(x)在(1,+∞)上單調(diào)遞增,故G(x)>G(1)=0,

21、∴g(x)>g.設(shè)0g,而0<<1,由g(x)在(0,1)上單調(diào)遞減, 故:x1<,∴x1x2<1. 對應(yīng)學(xué)生用書p43 (2018·全國卷Ⅰ理)已知函數(shù)f(x)=-x+alnx. (1)討論f(x)的單調(diào)性; (2)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,證明:2,令f′(x)=0得,x=或x=. 當(dāng)x∈∪時(shí),f′(x)<0; 當(dāng)x∈時(shí),f′(x)>0. 所以f(x)在,上單調(diào)遞減,在上單調(diào)遞增. (2)由(1)知,f(x)存在兩個(gè)極值點(diǎn)當(dāng)且僅當(dāng)a>2. 由于f(x)的兩個(gè)極值點(diǎn)x1,x2滿足x2-ax+1=0, 所以x1x2=1,不妨設(shè)x11. 由于=--1+a =-2+a=-2+a, 所以

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!