秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案

上傳人:xt****7 文檔編號:108797373 上傳時間:2022-06-16 格式:DOC 頁數(shù):19 大?。?82KB
收藏 版權(quán)申訴 舉報 下載
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案_第1頁
第1頁 / 共19頁
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案_第2頁
第2頁 / 共19頁
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案_第3頁
第3頁 / 共19頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題一 三角函數(shù)與平面向量 第3講 平面向量學(xué)案 [考情考向分析] 1.江蘇高考對平面向量側(cè)重基本概念與基本計算的考查.重點是向量的數(shù)量積運算.2.向量作為工具,常與三角函數(shù)、數(shù)列、解析幾何等結(jié)合,考查向量的綜合運用.解題時要注意解析法和轉(zhuǎn)化思想的滲透. 熱點一 平面向量的線性運算 例1 (1)如圖,在△ABC中,=,DE∥BC交AC于點E,BC邊上的中線AM交DE于點N,設(shè)=a,=b,用a,b表示向量,則=____________. 答案 (a+b) 解析 因為DE∥BC,所以DN∥BM, 則△AND∽△AMB,所以=. 因為=,所以

2、=. 因為M為BC的中點, 所以=(+)=(a+b), 所以==(a+b). (2)(2018·江蘇啟東中學(xué)模擬)如圖,在梯形ABCD中,AB∥CD,AB=3CD,點E是BC的中點.若=x+y,其中x,y∈R,則x+y的值為________. 答案  解析 由題意得,=(+)=(+3) =(+3-3)=2-, ∴=+, 故x+y=+=. 思維升華 (1)對于平面向量的線性運算,要先選擇一組基底,同時注意向量共線定理的靈活運用. (2)運算過程中重視數(shù)形結(jié)合,結(jié)合圖形分析向量間的關(guān)系. 跟蹤演練1 (1)已知兩點A(1,0),B(1,1),O為坐標原點,點C在第二象限

3、,且∠AOC=135°,設(shè)=-+λ(λ∈R),則λ的值為________. 答案  解析 由∠AOC=135°知,點C在直線y=-x(x<0)上, 設(shè)點C的坐標為(a,-a),a<0, ∵=-+λ(λ∈R),∴有(a,-a)=(-1+λ,λ), 得a=-1+λ,-a=λ,消去a得λ=. (2)如圖,一直線EF與平行四邊形ABCD的兩邊AB,AD分別交于E,F(xiàn)兩點,且交對角線AC于點K,其中,=,=,=λ,則λ的值為________. 答案  解析 ∵=,=, ∴=,=2. 由向量加法的平行四邊形法則可知,=+, ∴=λ=λ(+) =λ=λ+2λ, 由E,F(xiàn),K三點

4、共線,得λ+2λ=1,可得λ=. 熱點二 平面向量的數(shù)量積 例2 (1)(2018·江蘇興化一中模擬)在△ABC中,點D,E分別在線段AC,BC上,·=·,若AE,BD相交于點F,且||=,則·=________. 答案 3 解析 如圖,由已知,得·-·=0, ∴(+)·-·(+)=0, ∴·-·=0, ∴·(+)=0,即·=0, ∴BD⊥AE,在Rt△BEF中,·=||2=3. (2)(2018·江蘇揚州中學(xué)模擬)如圖,已知AC=BC=4,∠ACB=90°,M為BC的中點,D為以AC為直徑的圓上一動點,則·的最小值是________. 答案 8-4 解析 以

5、AC的中點O為原點,AC所在直線為x軸,建立如圖所示的平面直角坐標系,則A(-2,0),C(2,0),O(0,0),M(2,-2), 設(shè)D(2cos α,2sin α), ∴=(4,-2), =(2-2cos α,-2sin α), ∴·=4×(2-2cos α)+4sin α =8+4sin(α-θ), 其中tan θ=2, ∵sin(α-θ)∈[-1,1],∴(·)min=8-4. 思維升華 (1)數(shù)量積的計算通常有三種方法:數(shù)量積的定義、坐標運算、數(shù)量積的幾何意義,特別要注意向量坐標法的運用. (2)求解幾何圖形中的數(shù)量積問題,把向量分解轉(zhuǎn)化成已知向量的數(shù)量積計算是

6、基本方法,但是如果建立合理的平面直角坐標系,把數(shù)量積的計算轉(zhuǎn)化成坐標運算,也是一種較為簡捷的方法. 跟蹤演練2 (1)如圖,在梯形ABCD中,AB∥CD,AB=4,AD=3,CD=2,=2.若·=-3,則·=________. 答案  解析 方法一 設(shè)=4a,=3b, 其中|a|=|b|=1, 則=2a,=2b. 由·=(+)·(+)=-3, 得(3b+2a)·(2b-4a)=-3, 化簡得a·b=, 所以·=12a·b=. 方法二 以點A為坐標原點,AB所在直線為x軸,建立平面直角坐標系(圖略),則A(0,0),B(4,0), 設(shè)D(3cos α,3sin α),

7、 則C(3cos α+2,3sin α),M(2cos α,2sin α). 由·=-3, 得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3, 化簡得cos α=, 所以·=12cos α=. (2)如圖,已知在△ABC中,AB=AC=4,∠BAC=90°,D是BC的中點,若向量=+m,且的終點M在△ACD的內(nèi)部(不含邊界),則·的取值范圍是________. 答案 (-2,6) 解析 ·=(+) = =-×16+16m2 =16m2-3, 由平行四邊形法則可得m∈, 所以·的取值范圍是(-2,6). 熱點三 平面向量的綜合問題 例

8、3 (1)已知正實數(shù)x,y滿足向量a=(x+y,2),b=(xy-2,1)共線,c=,且a·(a-c)≥0恒成立,則實數(shù)m的取值范圍是________. 答案  解析 由a=(x+y,2),b=(xy-2,1)共線得x+y=2(xy-2), 則x+y+4=2xy≤, 即(x+y)2-2(x+y)-8≥0, 當(dāng)且僅當(dāng)x=y(tǒng)時等號成立. 又由x,y是正實數(shù),得x+y≥4. 不等式a·(a-c)≥0, 即a2≥a·c, 所以(x+y)2+4≥m(x+y)+3, 即(x+y)2-m(x+y)+1≥0,令x+y=t,t≥4, 則t2-mt+1≥0,t∈[4,+∞).(*) 對于方

9、程t2-mt+1=0,當(dāng)Δ=m2-4≤0, 即-2≤m≤2時,(*)式恒成立; 當(dāng)m<-2時,相應(yīng)二次函數(shù)y=t2-mt+1的對稱軸t=<-1,(*)式恒成立; 當(dāng)m>2時,由相應(yīng)二次函數(shù)y=t2-mt+1的對稱軸t=<4,且16-4m+1≥0, 得2

10、面直角坐標系, 設(shè)A(0,a),B(b,0),C(c,0), 所以=(c,-a), =(b,-a),=(c-b,0), =(-b,a),=(-c,a),=(b-c,0), 則由·+2·=·, 得b2+2cb+2a2-c2=0, 所以b2-2cb+c2=(c-b)2=2(a2+b2), 所以BC=AB. 由正弦定理得==. 思維升華 向量和三角函數(shù)、解析幾何、不等式等知識的交匯是高考的熱點,解決此類問題的關(guān)鍵是從知識背景出發(fā),脫去向量外衣,回歸到所要考查的知識方法. 跟蹤演練3 (1)若向量a=(cos α,sin α),b=(cos β,sin β),且|a+b|≤2

11、a·b,則cos(α-β)的值是________. 答案 1 解析 因為|a+b|≤2a·b, 所以≤2cos(α-β), 且cos(α-β)≥0,所以2+2cos(α-β)≤4cos2(α-β), 2cos2(α-β)-cos(α-β)-1≥0, 所以cos(α-β)≥1或cos(α-β)≤-(舍去), 所以cos(α-β)=1. (2)設(shè)向量a=(a1,a2),b=(b1,b2),定義一種向量積a?b=(a1b1,a2b2),已知向量m=,n=,點P(x,y)在y=sin x的圖象上運動,Q是函數(shù)y=f(x)圖象上的點,且滿足=m?+n(其中O為坐標原點),則函數(shù)y=f(x

12、)的值域是________. 答案  解析 令Q(c,d),由新的運算,可得=m?+n =+=, ∴消去x,得d=sin, ∴y=f(x)=sin, 易知y=f(x)的值域是. 1.(2016·江蘇)如圖,在△ABC中,D是BC的中點,E,F(xiàn)是AD上的兩個三等分點,·=4,·=-1,則·的值是________. 答案  解析 設(shè)=a,=b,則 ·=(-a)·(-b)=a·b=4. 又∵D為BC中點,E,F(xiàn)為AD的兩個三等分點, 則=(+)=a+b, ==a+b. ==a+b, =+=-a+a+b=-a+b, =+=-b+a+b=a-b, 則·= =-

13、a2-b2+a·b =-(a2+b2)+×4=-1, 可得a2+b2=. 又=+=-a+a+b=-a+b, =+=-b+a+b=a-b, 則·= =-(a2+b2)+a·b=-×+×4=. 2.(2017·江蘇)如圖,在同一個平面內(nèi),向量,,的模分別為1,1,,與的夾角為α,且tan α=7,與的夾角為45°.若=m+n(m,n∈R),則m+n=________. 答案 3 解析 如圖,設(shè)=m,=n,則在△ODC中,有OD=m,DC=n,OC=,∠OCD=45°, 由tan α=7,得cos α=, 又由余弦定理知, 即 ①+②得4-2n-m=0,即m=1

14、0-5n, 代入①得12n2-49n+49=0, 解得n=或n=, 當(dāng)n=時,m=10-5×=-<0(舍去), 當(dāng)n=時,m=10-5×=, 故m+n=+=3. 3.(2018·全國Ⅲ)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),則λ=________. 答案  解析 由題意得2a+b=(4,2), 因為c∥(2a+b),所以4λ=2,得λ=. 4.(2018·揚州樹人學(xué)校模擬)在△ABC中,AH是底邊BC上的高,點G是三角形的重心,若AB=2,AC=4,∠BAH=30°,則(+)·=________. 答案 6 解析 如圖,在△ABC

15、中,AH是底邊BC上的高,AB=2,∠BAH=30°, ∴AH=. 由題意得=-. ∵點G是△ABC的重心,∴==(+). ∴·=(-)·(+) =(2-2)=4. 又·=||||cos∠DAH =||×||× =||×||× =||2=2. ∴(+)·=·+· =2+4=6. 5.(2018·江蘇鹽城中學(xué)模擬)在△ABC中,AB⊥AC,AB=,AC=t,P是△ABC所在平面內(nèi)一點,若=+,則△PBC面積的最小值為________. 答案  解析 以點A為坐標原點,AB所在直線為x軸,建立如圖所示的平面直角坐標系, 可得A(0,0),B,C(0,t),

16、∵=+=(4,0)+(0,1)=(4,1), ∴P(4,1). 又||=,BC的方程為tx+=1, ∴點P到直線BC的距離為d=, ∴△PBC的面積為S=·BC·d =≥·=, 當(dāng)且僅當(dāng)4t=,即t=時取等號, ∴△PBC面積的最小值為. 6.(2017·江蘇)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π]. (1)若a∥b,求x的值; (2)記f(x)=a·b,求f(x)的最大值和最小值以及對應(yīng)的x的值. 解 (1)∵a∥b,∴3sin x=-cos x, ∴3sin x+cos x=0, ∴2sin=0,即sin=0, ∵0≤x≤π,∴≤

17、x+≤, ∴x+=π,∴x=. (2)f(x)=a·b=3cos x-sin x=-2sin. ∵x∈[0,π],∴x-∈, ∴-≤sin≤1, ∴-2≤f(x)≤3, 當(dāng)x-=-,即x=0時,f(x)取得最大值3; 當(dāng)x-=,即x=時,f(x)取得最小值-2. A組 專題通關(guān) 1.設(shè)向量a,b滿足|a+b|=,|a-b|=,則a·b=________. 答案 1 解析 由|a+b|=,得|a+b|2=10, 即a2+2a·b+b2=10.① 又|a-b|=,所以a2-2a·b+b2=6,② 由①-②,得4a·b=4,則a·b=1. 2.在△ABC中,點M,N

18、滿足=2,=.若=x+y,則x+y=________. 答案  解析?。剑剑? =+(-)=-, ∴x=,y=-,∴x+y=. 3.已知向量a=(1,2),b=(-2,-4),|c|=,若(a+b)·c=,則a,c的夾角大小為________. 答案 120° 解析 設(shè)a與c的夾角為θ, ∵a=(1,2),b=(-2,-4),則b=-2a, ∴(a+b)·c=-a·c=,∴a·c=-. ∴cos θ===-, ∵0°≤θ≤180°,∴θ=120°. 4.已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),則m-n的值為________.

19、 答案?。? 解析 ∵a=(2,1),b=(1,-2), ∴ma+nb=(2m+n,m-2n)=(9,-8), 即解得 故m-n=2-5=-3. 5.(2018·淮安模擬)如圖,在△ABC中,已知AB=3,AC=2,∠BAC=120°,D為邊BC的中點.若CE⊥AD,垂足為E,則·的值為________. 答案?。? 解析 ·=(+)·=· =(+)·=·=-2, 由余弦定理, 得BC==, 得cos C==, AD=,S△ACD=, 所以CE=,所以·=-. 6.在△ABC中,已知·+2·=3·,則cos C的最小值是________. 答案  解析 已知·

20、+2·=3·, 可得bccos A+2accos B=3abcos C, 由余弦定理得a2+2b2=3c2, 由cos C==≥, 當(dāng)b=a時取到等號,故cos C的最小值為. 7.已知e1,e2是夾角為的兩個單位向量,a=e1-2e2,b=ke1+e2,若a·b=0,則k的值為________. 答案  解析 因為e1,e2是夾角為的兩個單位向量, 所以e1·e2=|e1||e2|cos〈e1,e2〉=cos =-, 又a·b=0,所以(e1-2e2)·(ke1+e2)=0, 即k--2+(-2k)=0, 解得k=. 8.(2018·南通模擬)在△ABC中,AB=5,

21、AC=4,且·=12,設(shè)P是平面ABC上的一點,則·(+)的最小值是________. 答案?。? 解析 由AB=5,AC=4,且·=12,得cos A=, 如圖,以A為坐標原點,AC所在直線為x軸建立直角坐標系, 則C(4,0),B(3,4), 設(shè)點P的坐標為P(x,y), 則·(+)=(-x,-y)·(7-2x,4-2y) =2x2-7x+2y2-4y =22+2(y-1)2-, 即·(+)的最小值是-. 9.設(shè)向量a=(cos α,sin α),b=(cos β,sin β),其中0<α<β<π,若|2a-b|=|a+2b|,求β-α的值. 解 因為|2a-b|=

22、|a+2b|, 所以|2a-b|2=|a+2b|2, 所以8a·b=3(|a|2-|b|2)=0,所以a·b=0. 又因為a=(cos α,sin α),b=(cos β,sin β), 所以a·b=cos αcos β+sin αsin β=cos(β-α)=0, 因為0<α<β<π,所以β-α=. 10.(2018·蘇北六市調(diào)研)在平面直角坐標系xOy中,設(shè)向量a=(cos α,sin α),b=(-sin β,cos β),c=. (1)若|a+b|=|c|,求sin(α-β)的值; (2)設(shè)α=,0<β<π,且a∥(b+c),求β的值. 解 (1)因為a=(cos α

23、,sin α),b=(-sin β,cos β), c=, 所以|a|=|b|=|c|=1, 且a·b=-cos αsin β+sin αcos β=sin(α-β). 因為|a+b|=|c|,所以|a+b|2=c2, 即a2+2a·b+b2=1, 所以1+2sin(α-β)+1=1,即sin(α-β)=-. (2)因為α=,所以a=. 故b+c=. 因為a∥(b+c), 所以--=0. 化簡得,sin β-cos β=, 所以sin=. 因為0<β<π,所以-<β-<. 所以β-=,即β=. B組 能力提高 11.在△ABC中,AB=2,AC=3,角A的角平分

24、線與AB邊上的中線交于點O,若=x+y(x,y∈R),則x+y的值為________. 答案  解析 可設(shè)AB的中點為D,根據(jù)條件AO為∠BAC的角平分線,從而可得=+,k>0. 又D,O,C三點共線及D為AB的中點, 便可得出=+(1-λ), 從而由平面向量基本定理得 所以k=,所以x+y=. 12.(2018·江蘇海門中學(xué)模擬)如圖,在扇形AOB中,OA=4,∠AOB=120°,P為弧AB上的一點,OP與AB相交于點C,若·=8,則·的值為________. 答案 4 解析 由題意可知,·=4×4×cos∠AOP=8, 則cos∠AOP=,∠AOP=60°, 結(jié)合

25、平面幾何知識可得OC=PC=OP, 由向量的運算法則可知 ·=·(-)=·(-) =×42-×8=4. 13.已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α

26、x+2sin xcos α =2sin xcos x+(sin x+cos x). 令t=sin x+cos x, 則2sin xcos x=t2-1,且-1

27、n α)+sin α(cos x+2cos α)=0, ∴sin(x+α)+2sin 2α=0,即sin+2sin 2α=0. ∴sin 2α+cos 2α=0, ∴tan 2α=-. 14.(2018·江蘇泰州中學(xué)模擬)如圖,在△ABC中,AB=AC=1,∠BAC=. (1)求·的值; (2)設(shè)點P在以A為圓心,AB為半徑的圓弧BC上運動,且=x+y,其中x,y∈R.求xy的取值范圍. 解 (1)·=·(-) =·-||2=--1=-. (2)以點A為坐標原點,AB所在直線為x軸,建立如圖所示的平面直角坐標系, 則B(1,0),C. 設(shè)P(cos θ,sin θ),θ∈, 由=x+y, 得(cos θ,sin θ)=x(1,0)+y. 所以cos θ=x-,sin θ=y(tǒng). 所以x=cos θ+sin θ,y=sin θ, xy=sin θcos θ+sin2θ=sin 2θ+(1-cos 2θ) =sin+. 因為θ∈,2θ-∈, 所以當(dāng)2θ-=, 即θ=時,xy的最大值為1; 當(dāng)2θ-=-或2θ-=, 即θ=0或θ=時,xy的最小值為0. 故xy的取值范圍是[0,1].

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!