《初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)匯總.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)匯總.doc(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、1.定義:一般地,如果是常數(shù),那么叫做的二次函數(shù).2.二次函數(shù)的性質(zhì)(1)拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),對稱軸是軸.(2)函數(shù)的圖像與的符號(hào)關(guān)系. 當(dāng)時(shí)拋物線開口向上頂點(diǎn)為其最低點(diǎn);當(dāng)時(shí)拋物線開口向下頂點(diǎn)為其最高點(diǎn).(3)頂點(diǎn)是坐標(biāo)原點(diǎn),對稱軸是軸的拋物線的解析式形式為.3.二次函數(shù) 的圖像是對稱軸平行于(包括重合)軸的拋物線.4.二次函數(shù)用配方法可化成:的形式,其中.5.二次函數(shù)由特殊到一般,可分為以下幾種形式:;.6.拋物線的三要素:開口方向、對稱軸、頂點(diǎn). 的符號(hào)決定拋物線的開口方向:當(dāng)時(shí),開口向上;當(dāng)時(shí),開口向下;相等,拋物線的開口大小、形狀相同. 平行于軸(或重合)的直線記作.特別地,軸記
2、作直線.7.頂點(diǎn)決定拋物線的位置.幾個(gè)不同的二次函數(shù),如果二次項(xiàng)系數(shù)相同,那么拋物線的開口方向、開口大小完全相同,只是頂點(diǎn)的位置不同.8.求拋物線的頂點(diǎn)、對稱軸的方法(1)公式法:,頂點(diǎn)是,對稱軸是直線. (2)配方法:運(yùn)用配方的方法,將拋物線的解析式化為的形式,得到頂點(diǎn)為(,),對稱軸是直線. (3)運(yùn)用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點(diǎn)是頂點(diǎn). 用配方法求得的頂點(diǎn),再用公式法或?qū)ΨQ性進(jìn)行驗(yàn)證,才能做到萬無一失.9.拋物線中,的作用 (1)決定開口方向及開口大小,這與中的完全一樣. (2)和共同決定拋物線對
3、稱軸的位置.由于拋物線的對稱軸是直線,故:時(shí),對稱軸為軸;(即、同號(hào))時(shí),對稱軸在軸左側(cè);(即、異號(hào))時(shí),對稱軸在軸右側(cè). (3)的大小決定拋物線與軸交點(diǎn)的位置. 當(dāng)時(shí),拋物線與軸有且只有一個(gè)交點(diǎn)(0,): ,拋物線經(jīng)過原點(diǎn); ,與軸交于正半軸;,與軸交于負(fù)半軸. 以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時(shí),仍成立.如拋物線的對稱軸在軸右側(cè),則 .10.幾種特殊的二次函數(shù)的圖像特征如下:函數(shù)解析式開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)當(dāng)時(shí)開口向上當(dāng)時(shí)開口向下(軸)(0,0)(軸)(0, )(,0)(,)()11.用待定系數(shù)法求二次函數(shù)的解析式 (1)一般式:.已知圖像上三點(diǎn)或三對、的值,通常選擇一般式. (2)頂點(diǎn)式:.
4、已知圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)式. (3)交點(diǎn)式:已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:.12.直線與拋物線的交點(diǎn) (1)軸與拋物線得交點(diǎn)為(0, ). (2)與軸平行的直線與拋物線有且只有一個(gè)交點(diǎn)(,). (3)拋物線與軸的交點(diǎn) 二次函數(shù)的圖像與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)、,是對應(yīng)一元二次方程的兩個(gè)實(shí)數(shù)根.拋物線與軸的交點(diǎn)情況可以由對應(yīng)的一元二次方程的根的判別式判定: 有兩個(gè)交點(diǎn)拋物線與軸相交; 有一個(gè)交點(diǎn)(頂點(diǎn)在軸上)拋物線與軸相切; 沒有交點(diǎn)拋物線與軸相離. (4)平行于軸的直線與拋物線的交點(diǎn) 同(3)一樣可能有0個(gè)交點(diǎn)、1個(gè)交點(diǎn)、2個(gè)交點(diǎn).當(dāng)有2個(gè)交點(diǎn)時(shí),兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐
5、標(biāo)為,則橫坐標(biāo)是的兩個(gè)實(shí)數(shù)根. (5)一次函數(shù)的圖像與二次函數(shù)的圖像的交點(diǎn),由方程組 的解的數(shù)目來確定:方程組有兩組不同的解時(shí)與有兩個(gè)交點(diǎn); 方程組只有一組解時(shí)與只有一個(gè)交點(diǎn);方程組無解時(shí)與沒有交點(diǎn). (6)拋物線與軸兩交點(diǎn)之間的距離:若拋物線與軸兩交點(diǎn)為,由于、是方程的兩個(gè)根,故 二次函數(shù)的解析式有三種形式:(1)一般式:(2)頂點(diǎn)式:(3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點(diǎn),則不能這樣表示??键c(diǎn)三、二次函數(shù)的最值 (10分)如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)時(shí),。如
6、果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時(shí),;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時(shí),當(dāng)時(shí),;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時(shí),當(dāng)時(shí),??键c(diǎn)四、二次函數(shù)的性質(zhì) (614分) 1、二次函數(shù)的性質(zhì)函數(shù)二次函數(shù)圖像a0a0 y 0 x y 0 x 性質(zhì)(1)拋物線開口向上,并向上無限延伸;(2)對稱軸是x=,頂點(diǎn)坐標(biāo)是(,);(3)在對稱軸的左側(cè),即當(dāng)x時(shí),y隨x的增大而增大,簡記左減右增;(4)拋物線有最低點(diǎn),當(dāng)x=時(shí),y有最小值,(1)拋物線開口向下,并向下無限延伸;(2)對稱軸是x=,頂點(diǎn)坐
7、標(biāo)是(,);(3)在對稱軸的左側(cè),即當(dāng)x時(shí),y隨x的增大而減小,簡記左增右減;(4)拋物線有最高點(diǎn),當(dāng)x=時(shí),y有最大值,2、二次函數(shù)中,的含義:表示開口方向:0時(shí),拋物線開口向上, 0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)0時(shí),圖像與x軸沒有交點(diǎn)。二次函數(shù)知識(shí)點(diǎn):1二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。 這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零二次函數(shù)的定義域是全體實(shí)數(shù)2. 二次函數(shù)的結(jié)構(gòu)特征: 等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2 是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)二次函數(shù)的基本形式1. 二次函數(shù)基
8、本形式:的性質(zhì):結(jié)論:a 的絕對值越大,拋物線的開口越小??偨Y(jié):的符號(hào)開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減??;時(shí),有最小值向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值2. 的性質(zhì): 結(jié)論:上加下減。同左上加,異右下減總結(jié):的符號(hào)開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減??;時(shí),有最小值向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值3. 的性質(zhì):結(jié)論:左加右減。同左上加,異右下減總結(jié):的符號(hào)開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上X=h時(shí),隨的增大而增大;時(shí),隨的增大而減?。粫r(shí),有最小值向下X=h時(shí),隨的增大而減?。粫r(shí),隨
9、的增大而增大;時(shí),有最大值 4. 的性質(zhì):總結(jié):的符號(hào)開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上X=h時(shí),隨的增大而增大;時(shí),隨的增大而減??;時(shí),有最小值向下X=h時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值二次函數(shù)圖象的平移 1. 平移步驟: 將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式,確定其頂點(diǎn)坐標(biāo); 保持拋物線的形狀不變,將其頂點(diǎn)平移到處,具體平移方法如下: 2. 平移規(guī)律 在原有函數(shù)的基礎(chǔ)上“值正右移,負(fù)左移;值正上移,負(fù)下移”概括成八個(gè)字“同左上加,異右下減”三、二次函數(shù)與的比較請將利用配方的形式配成頂點(diǎn)式。請將配成。總結(jié):從解析式上看,與是兩種不同的表達(dá)形式,后者通過配方可以得到前者,即,其中四、二次
10、函數(shù)圖象的畫法五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開口方向、對稱軸及頂點(diǎn)坐標(biāo),然后在對稱軸兩側(cè),左右對稱地描點(diǎn)畫圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與軸的交點(diǎn)、以及關(guān)于對稱軸對稱的點(diǎn)、與軸的交點(diǎn),(若與軸沒有交點(diǎn),則取兩組關(guān)于對稱軸對稱的點(diǎn)).畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對稱軸,頂點(diǎn),與軸的交點(diǎn),與軸的交點(diǎn).五、二次函數(shù)的性質(zhì) 1. 當(dāng)時(shí),拋物線開口向上,對稱軸為,頂點(diǎn)坐標(biāo)為當(dāng)時(shí),隨的增大而減小;當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),有最小值 2. 當(dāng)時(shí),拋物線開口向下,對稱軸為,頂點(diǎn)坐標(biāo)為當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),隨的增大而減?。划?dāng)時(shí),有最大值六、二次函數(shù)解析式的表示方法1. 一般式
11、:(,為常數(shù),);2. 頂點(diǎn)式:(,為常數(shù),);3. 兩根式:(,是拋物線與軸兩交點(diǎn)的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與軸有交點(diǎn),即時(shí),拋物線的解析式才可以用交點(diǎn)式表示二次函數(shù)解析式的這三種形式可以互化.七、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系 1. 二次項(xiàng)系數(shù)二次函數(shù)中,作為二次項(xiàng)系數(shù),顯然 當(dāng)時(shí),拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大; 當(dāng)時(shí),拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大總結(jié)起來,決定了拋物線開口的大小和方向,的正負(fù)決定開口方向,的大小決定開口的大小2. 一次項(xiàng)系數(shù)
12、 在二次項(xiàng)系數(shù)確定的前提下,決定了拋物線的對稱軸 在的前提下,當(dāng)時(shí),即拋物線的對稱軸在軸左側(cè);ab同號(hào)同左上加當(dāng)時(shí),即拋物線的對稱軸就是軸;當(dāng)時(shí),即拋物線對稱軸在軸的右側(cè)a,b異號(hào)異右下減 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時(shí),即拋物線的對稱軸在軸右側(cè);a,b異號(hào)異右下減當(dāng)時(shí),即拋物線的對稱軸就是軸;當(dāng)時(shí),即拋物線對稱軸在軸的左側(cè)ab同號(hào)同左上加總結(jié)起來,在確定的前提下,決定了拋物線對稱軸的位置總結(jié): 同左上加 異右下減 3. 常數(shù)項(xiàng) 當(dāng)時(shí),拋物線與軸的交點(diǎn)在軸上方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為正; 當(dāng)時(shí),拋物線與軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與軸交點(diǎn)的縱坐標(biāo)為; 當(dāng)時(shí),拋物線與軸的交點(diǎn)在軸下方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為負(fù) 總結(jié)起來,決定了拋物線與軸交點(diǎn)的位置 總之,只要都確定,那么這條拋物線就是唯一確定的二次函數(shù)解析式的確定:根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问?,才能使解題簡便一般來說,有如下幾種情況:1. 已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;2. 已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;3. 已知拋物線與軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;4. 已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式9