《2020高考數(shù)學(xué)二輪復(fù)習(xí) 分層特訓(xùn)卷 方法技巧專練(一) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)二輪復(fù)習(xí) 分層特訓(xùn)卷 方法技巧專練(一) 文(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、三 方法技巧專練專練(一)
技法1 直接法
1.[2019·唐山市摸底考試]設(shè)z=,則|z|=( )
A. B.2
C. D.1
答案:D
解析:解法一 ∵z====+i,∴|z|==1,故選D.
解法二 |z|=====1,故選D.
2.[2019·湖南長(zhǎng)沙雅禮中學(xué)月考]設(shè)集合A={1,2,3,4},B={0,1,2,4,5},全集U=A∪B,則集合?U(A∩B)中的元素共有( )
A.3個(gè) B.4個(gè)
C.5個(gè) D.6個(gè)
答案:A
解析:由題意得A∪B={0,1,2,3,4,5},A∩B={1,2,4},所以?U(A∩B)={0,3,5},
2、故選A.
3.[2019·廣東佛山一中期末]已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中b=3,c=2.O為△ABC的外心,則·=( )
A. B.
C. D.
答案:B
解析:∵=-,∴·=·-·,又O為△ABC的外心,b=3,c=2.∴在,上的投影分別為,1,∴·=·-·=-2=.故選B.
4.[2019·全國(guó)卷Ⅰ,8]如圖是求的程序框圖,圖中空白框中應(yīng)填入( )
A.A= B.A=2+
C.A= D.A=1+
答案:A
解析:本題主要考查含有當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖,考查考生的推理論證能力,考查的核心素養(yǎng)是邏輯推理.
A=,k=1,1≤2成
3、立,執(zhí)行循環(huán)體;A=,k=2,2≤2成立,執(zhí)行循環(huán)體;A=,k=3,3≤2不成立,結(jié)束循環(huán),輸出A.故空白框中應(yīng)填入A=.故選A.
技法2 排除法
5.[2019·全國(guó)卷Ⅰ,1]已知集合M={x|-4
4、x<2},故選C.
優(yōu)解 由題得N={x|-20時(shí),y==,所以函數(shù)y=在(0,+∞)上單調(diào)遞減,所以排除選項(xiàng)B,D;又當(dāng)x=1時(shí),y=<1,所以排除選項(xiàng)A,故選C.
7.[2019·廣東廣州一測(cè)]如圖,一高為H且裝滿水的魚(yú)缸,其底部裝有一排水小孔,當(dāng)小孔打開(kāi)時(shí),水從孔中勻速流出,水流完所用時(shí)間為T(mén).若魚(yú)缸水深為h時(shí),水流出所用時(shí)間為t,則函數(shù)
5、h= f(t)的圖象大致是( )
答案:B
解析:水位由高變低,排除C,D.水流完半缸前下降速度先快后慢,水流完半缸后下降速度先慢后快,故選B.
8.[2019·長(zhǎng)春市質(zhì)量檢測(cè)(二)]定義在[0,π]上的函數(shù)y=sin(ω>0)有零點(diǎn),且值域M?,則ω的取值范圍是( )
A. B.
C. D.
答案:C
解析:法一 由0≤x≤π,得-≤ωx-≤ωπ-,當(dāng)x=0時(shí),y=-.因?yàn)楹瘮?shù)y=sin在[0,π]上有零點(diǎn),所以0≤ωπ-,ω≥.因?yàn)橹涤騇?,所以ωπ-≤π+,ω≤,從而≤ω≤.故選C.
法二 當(dāng)ω=2時(shí),因?yàn)閤∈[0,π],所以2x-∈,則y∈[-1,1]?,排
6、除B、D.當(dāng)ω=時(shí),滿足條件,排除A,故選C.
技法3 特值法
9.已知a,b為實(shí)數(shù),且a≠b,a<0,則( )
A.a(chǎn)>2b- B.a(chǎn)<2b-
C.a(chǎn)≥2b- D.a(chǎn)≤2b-
答案:B
解析:因?yàn)閍,b為實(shí)數(shù),且a≠b,a<0,
所以a-=<0,
所以a<2b-.
10.方程ax2+2x+1=0至少有一個(gè)負(fù)根的充要條件是( )
A.0<a≤1 B.a(chǎn)<1
C.a(chǎn)≤1 D.0<a≤1或a<0
答案:C
解析:當(dāng)a=0時(shí),x=-,故排除A、D.當(dāng)a=1時(shí),x=-1,排除B.
11.計(jì)算=( )
A.-2 B.2
C.-1 D.1
答案:D
解
7、析:取α=,則原式===1.
12.如圖所示,在?ABCD中,AP⊥BD,垂足為點(diǎn)P,且AP=3,則·=________.
答案:18
解析:把?ABCD看成正方形,則點(diǎn)P為對(duì)角線的交點(diǎn),AC=6,則·=18.
技法4 圖解法
13.[2019·全國(guó)卷Ⅰ,7]已知非零向量a,b滿足|a|=2|b|,且(a-b)⊥b,則a與b的夾角為( )
A. B.
C. D.
答案:B
解析:本題主要考查平面向量的垂直、平面向量的夾角,考查考生的化歸與轉(zhuǎn)化能力、運(yùn)算求解能力,考查的核心素養(yǎng)是邏輯推理、數(shù)學(xué)運(yùn)算.
設(shè)a與b的夾角為α,∵(a-b)⊥b,∴(a-b)·b=0,∴a·
8、b=b2,∴|a|·|b|cos α=|b|2,又|a|=2|b|,∴cos α=,∵α∈(0,π),∴α=.故選B.
14.[2018·全國(guó)卷Ⅰ,12]設(shè)函數(shù)f(x)=,則滿足f(x+1)
9、1),若a∥b,則m的最大值為( )
A.-6 B.6
C.1 D.-1
答案:B
解析:因?yàn)閍=(y-2x,m),b=(1,-1),a∥b,所以m=2x-y,作出可行域如圖中陰影部分所示,做出直線2x-y=0,并平移,結(jié)合圖象易知,m=2x-y取得最大值的最優(yōu)解為(4,2),所以m的最大值為6.故選B.
16.[2019·吉林二調(diào)]已知函數(shù)f(x)=若關(guān)于x的方程f2(x)-3f(x)+a=0(a∈R)有8個(gè)不等的實(shí)數(shù)根,則a的取值范圍是( )
A. B.
C.(1,2) D.
答案:D
解析:函數(shù)f(x)=的圖象如圖,
關(guān)于x的方程f2(x)-3f(x)+a=0有8個(gè)不等的實(shí)數(shù)根,
f(x)必須有4個(gè)不相等的實(shí)數(shù)根,
由函數(shù)f(x)圖象可知f(x)∈(1,2),
令t=f(x),方程f2(x)-3f(x)+a=0化為
a=-t2+3t,t∈(1,2),
a=-t2+3t,開(kāi)口向下,對(duì)稱軸為t=,
可知a的最大值為-2+3×=,
a的最小值為2(取不到),所以a∈.故選D.
7