秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2020版高考數(shù)學二輪復習 專題限時集訓7 空間幾何體的表面積、體積及有關量的計算 理

上傳人:Sc****h 文檔編號:116802081 上傳時間:2022-07-06 格式:DOC 頁數(shù):7 大?。?.60MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學二輪復習 專題限時集訓7 空間幾何體的表面積、體積及有關量的計算 理_第1頁
第1頁 / 共7頁
2020版高考數(shù)學二輪復習 專題限時集訓7 空間幾何體的表面積、體積及有關量的計算 理_第2頁
第2頁 / 共7頁
2020版高考數(shù)學二輪復習 專題限時集訓7 空間幾何體的表面積、體積及有關量的計算 理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學二輪復習 專題限時集訓7 空間幾何體的表面積、體積及有關量的計算 理》由會員分享,可在線閱讀,更多相關《2020版高考數(shù)學二輪復習 專題限時集訓7 空間幾何體的表面積、體積及有關量的計算 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(七) 空間幾何體的表面積、體積及有關量的計算 [專題通關練] (建議用時:30分鐘) 1.在一個密閉透明的圓柱筒內(nèi)裝一定體積的水,將該圓柱筒分別豎直、水平、傾斜放置時,指出圓柱桶內(nèi)的水平面可以呈現(xiàn)出的幾何形狀不可能是(  ) A.圓面      B.矩形面 C.梯形面 D.橢圓面或部分橢圓面 C [將圓柱桶豎放,水面為圓面;將圓柱桶斜放,水面為橢圓面或部分橢圓面;將圓柱桶水平放置,水面為矩形面,所以圓柱桶內(nèi)的水平面可以呈現(xiàn)出的幾何形狀不可能是梯形面,故選C.] 2.[易錯題]一個正方體的內(nèi)切球O1、外接球O2、與各棱都相切的球O3的半徑之比為(  ) A.1∶3

2、∶2     B.1∶1∶1 C.1∶∶ D.1∶2∶3 C [設正方體的棱長為1,則其內(nèi)切球O1的半徑為,外接球O2的半徑為(正方體體對角線的一半),與各棱都相切的球O3的半徑為(正方體面對角線的一半),所以它們的半徑之比是1∶∶,故選C.] 3.已知三棱錐P-ABC中,PB⊥平面ABC,∠ABC=90°,PA=,AB=BC=1,則三棱錐P-ABC 的外接球的表面積為(  ) A.12π B.6π C.24π D. B [如圖, ∵PB⊥平面ABC,∴PB⊥AB, ∵AB=1,PA=,∴PB=2, 又AB⊥BC,把三棱錐P-ABC補形為長方體,則長方體對角線長為=,

3、則三棱錐P-ABC外接球的半徑為, ∴三棱錐P-ABC的外接球的表面積為4π×=6π.故選B.] 4.[重視題]兩個相同的正四棱錐底面重合組成一個八面體,可放于棱長為1的正方體中,重合的底面與正方體的某一個面平行,各頂點均在正方體的表面上(如圖),該八面體的體積可能值有(  ) A.1個 B.2個 C.3個 D.無數(shù)個 D [設ABCD與正方體的截面四邊形為A′B′C′D′,設AA′=x(0≤x≤1),則AB′=1-x, |AD|2=x2+(1-x)2=2+, 故S四邊形ABCD=|AD|2∈, V=S四邊形ABCD·h·2=S四邊形ABCD∈. ∴該八面體的體積可能值有

4、無數(shù)個,故選D.] 5.已知正三棱柱ABC-A1B1C1的底面邊長為2,側(cè)棱長為,D為BC的中點,則三棱錐A-B1DC1的體積為(  ) A.3 B. C.1 D. C [∵D是等邊三角形ABC的邊BC的中點, ∴AD⊥BC. 又ABC-A1B1C1為正三棱柱, ∴AD⊥平面BB1C1C. ∵四邊形B為矩形,∴S=S=×2×=.又AD=2×=, ∴V=S·AD=××=1.故選C.] 6.如圖所示,圖中陰影部分繞AB旋轉(zhuǎn)一周所形成的幾何體的體積為________.  [由題知,旋轉(zhuǎn)一周后形成的幾何體是一圓臺去掉一個半球,其中圓臺的體積為V=×(π×22++π×5

5、2)×4=52π,半球的體積V=××π×23=,則所求體積為52π-=.] 7.魯班鎖是中國傳統(tǒng)的智力玩具,起源與古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱.從外表上看,六根等長的正四棱柱體分成三組,經(jīng)90°榫卯起來,如圖,若正四棱柱體的高為6,底面正方形的邊長為1,現(xiàn)將該魯班鎖放進一個球形容器內(nèi),則該球形容器的表面積的最小值為________.(容器壁的厚度忽略不計) 41π [由題意,該球形容器的半徑的最小值為:=, ∴該球形容器的表面積的最小值為4π·=41π.] 8.

6、三棱錐P-ABC的四個頂點均在同一個球面上,其中PA⊥平面ABC,△ABC是正三角形,PA=2BC=4,則該球的表面積為________.  [球心應位于過正三角形ABC的中心且垂直于平面ABC的直線上,又PA⊥平面ABC,PA=4,所以球心O到平面ABC的距離為2,所以球的半徑r==,所以球的表面積為S=4πr2=.] [能力提升練] (建議用時:15分鐘) 9.(2019·成都七中模擬)《九章算術》中將底面是直角三角形、側(cè)棱垂直于底面的三棱柱稱之為“塹堵”,現(xiàn)有一“塹堵”型石材,其底面三邊長分別為3,4,5,若此石材恰好可以加工成一個最大的球體,則其高為(  ) A.4 B.3

7、 C.2 D.1 C [ 如圖,是過球心且與底面平行的軸截面,設球的半徑為r,由AC=3,BC=4,可得AB=5,由等面積法可得:×3×4=(3+4+5)r,解得r=1.∴此石材d的高為2r=2.故選C.] 10.(2019·唐山二模)某幾何體的三視圖如圖所示,則該幾何體的表面積為(  ) A.16π B.14π C.10π D.8π C [根據(jù)三視圖知,該幾何體是半球體截去一個圓錐體剩余部分,畫出圖形如圖所示; 結(jié)合圖中數(shù)據(jù),計算該幾何體的表面積為 S=S半球表面積+S半球底面圓+S圓錐側(cè)面積-S圓錐底面圓=2π·()2+π·()2+π·1·-π·12=10π.故

8、選C.] 11.一塊邊長為6 cm的正方形鐵皮按如圖1所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖2放置,若其正視圖為等腰直角三角形,則該容器的體積為(  ) 圖1             圖2 A.12 cm3 B.4 cm3 C.27 cm3 D.9 cm3 D [如圖2,△PMN為該四棱錐的正視圖,由圖1可知,PM+PN=6,且PM=PN,由△PMN為等腰直角三角形,可知MN=3,PM=3.設MN中點為O,則PO⊥平面ABCD,∴PO=MN=,∴VP-ABCD=×2×=×18×=9.選D. ] 圖1         圖2

9、 12.[重視題]正三棱錐S-ABC的底面邊長為a,各側(cè)面的頂角為30°,D為側(cè)棱SC的中點,截面△DEF過D且平行于AB.當△DEF的周長最小時,截得的三棱錐S-DEF的側(cè)面積為________. a2 [將正三棱錐的側(cè)面展開(如圖所示),可得三個頂角均為30°的等腰三角形,底面邊長為a,D′為SC′的中點,DD′的連線長即為最短. ∵DD′∥CC′∥A′B′,∴E′,F(xiàn)′即為相對應的E,F(xiàn). 在△SCB′中,B′C=a,∠CSB′=30°, 則SC=SB′=. 又∵∠CSC′=90°, ∴DD′=CC′=·a·=a, 即為截面△DEF的周長的最小值, 這時,三棱錐S-DEF

10、的側(cè)面展開圖的頂角為90°, ∴S△SDD′==a2.] 題號 內(nèi)容 押題依據(jù) 1 數(shù)學文化、錐體的體積、柱體的表面積、不等式 高考熱點之一,通過對幾何體的體積計算實現(xiàn)知識間的融合考查了學生的空間想象和數(shù)學運算的素養(yǎng) 2 球的切接體積的最值問題 有關球的切接及體積的最值問題一直是高考的熱點,考查學生的動態(tài)分析問題能力 【押題1】 《九章算術》是我國古代數(shù)學名著,它在幾何學中的研究比西方早一千多年.例如“塹堵”指的是底面為直角三角形,且側(cè)棱垂直于底面的三棱柱;“陽馬”指的是底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖所示,在塹堵ABC-A1B1C1中,AC⊥BC,A1A=

11、AB=2,當塹堵ABC-A1B1C1的側(cè)面積取得最大值時,陽馬B-A1ACC1的體積為(  ) A.    B. C.4 D. A [根據(jù)題意,設AC=x,BC=y(tǒng),則有x2+y2=4,塹堵ABC-A1B1C1的側(cè)面積S側(cè)=(2+x+y)×2=4+2(x+y)≤4+2=4+2,當且僅當x=y(tǒng)=時取等號,此時陽馬B-A1ACC1的體積V=×AC×CC1×BC=××2×=,故選A. 【押題2】 如圖,三棱錐A-BCD中,AD⊥BD,AC⊥BC,∠DAB=,∠BAC=.三棱錐的外接球的表面積為16π,則該三棱錐的體積的最大值為(  ) A. B. C. D. B [設外接球的半徑為R.由題意得,4πR2=16π,解得R=2.由題意知△ADB,△ABC都是直角三角形,所以三棱錐A-BCD的外接球的球心為AB的中點,且AB=4.由∠DAB=,∠BAC=,可求得AD=2,BD=2,AC=BC=2.當三棱錐A-BCD的體積最大時,平面ADB⊥平面ABC.所以三棱錐的體積的最大值為V三棱錐A-BCD=V三棱錐C-ABD=××2×2×2=.故選B.] - 7 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!