《新課標(biāo)高中數(shù)學(xué)理第一輪總復(fù)習(xí)直線與平面平行和平面與平面》由會員分享,可在線閱讀,更多相關(guān)《新課標(biāo)高中數(shù)學(xué)理第一輪總復(fù)習(xí)直線與平面平行和平面與平面(35頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、會計學(xué)1新課標(biāo)高中數(shù)學(xué)理第一輪總復(fù)習(xí)新課標(biāo)高中數(shù)學(xué)理第一輪總復(fù)習(xí) 直線與直線與平面平行和平面與平面平面平行和平面與平面第1頁/共35頁1.有下列四個命題:平行于同一直線的兩個平面平行;平行于同一平面的兩個平面平行;一個平面與兩個平行平面相交,交線平行;一條直線與兩個平行平面中的一個相交,則必與另一個相交其中假命題的序號為_.解析:平行于同一直線的兩個平面還可以相交,故是假命題第2頁/共35頁2.已知直線aa,ba,則兩條直線a與b的位置關(guān)系_.平行或異面第3頁/共35頁3.已知下列四個命題:如果a,b是兩條直線,且ab,那么a平行于經(jīng)過b的任何平面;如果直線a和平面a滿足aa,那么a與a內(nèi)的任
2、何直線平行;如果直線a和平面a,b滿足aa,a平行于平面b內(nèi)無數(shù)條直線,則ab;如果異面直線a,b和平面a,b滿足aa,bb,ab,ba,則ab.其中正確命題的序號是_.第4頁/共35頁解析:錯,因為過b的任何平面包括同時過a的平面;錯,因為aa時,a與a內(nèi)的直線可能異面;錯,直線a與經(jīng)過a的無數(shù)個平面與平面b的交線都平行,平面a,b平行或相交;正確,經(jīng)過a作平面,b=l,因為ab,所以al.因為a,b是異面直線,bb,所以直線l與b相交 因為l a,aa,al,所以la,又ba,直線l與b相交,lb,bb,所以ab.第5頁/共35頁4.在正方體AABCD-A1B1C1D1中,點E在棱DD1上
3、,則當(dāng)點E滿足_時,BD1平面ACE.點E為DD1的中點第6頁/共35頁解析:點E是棱DD1的中點 如圖,連接BD交AC于點F,連接EF.因為BD1平面ACE,BD1 平面AEC,平面BDD1平面ACE=EF,所以EFBD1.又在DBD1中,F(xiàn)為DB的中點,所以點E是棱DD1的中點第7頁/共35頁5.過三棱柱ABC-A1B1C1的任意兩條棱的中點作直線,其中共有_條直線與平面AA1C1C平行6第8頁/共35頁1111111112.MNPQABBCBCABQMMNNPPQMNACPQMNPQACMNPQAAC CMNPQAAC CPPP如圖,分別是,的中點,連接,所以,所以平面平面,所以四邊形的
4、四條邊以及對角線所在的直線都平行于平面解析:第9頁/共35頁直線與平面平行直線與平面平行【例1】如圖,正方體ABCDA1B1C1D1中,點N在BD上,點M在B1C上,且CMDN,求證:MN平面AA1B1B.第10頁/共35頁111111111111/./MEBCBBENFADABFEFEFAAB BB MMENFBNBCBCADBDABCDABC DCMDNB MNBMEBNNFBCBDMENFBCBDADMEBCADNFMEFNMNEFMNAA方法:如圖,作,交于,作,交于,連結(jié),則平面易得,在正方體中,所以又,所以,所以又,所以四邊形為平行四邊形【,所以,所以】平面證明11.B B第11頁
5、/共35頁1111111111112././.CNBAPB PB PAAB BNDCNNDCNBPNBPNCMDNBCBDCMDNCNMNB PMBNBNPB PAAB BMNAAB B方法:如圖,連結(jié)并延長交所在直線于點,連結(jié),則平面因為,所以又,所以,所以因為平面,所以平面VV第12頁/共35頁11111111113/./.,/.MPBBBCPNPCMCPMPBBMBPBBDBCDNCMCMDNCPDNB MBNMBNBPBNBNPCDABMNPAAB BMNAAB B方法:如圖,作,交于點,連結(jié)因為,所以因為,所以,所以所以所以,所以平面平面,所以平面第13頁/共35頁 (1)欲利用判定
6、定理證明線面平行,就是根據(jù)題中的條件在這個平面內(nèi)去尋找這條“目標(biāo)直線”,構(gòu)成平行關(guān)系的橋梁,從而完成過渡尋找方法一是將線段平移到已知平面(如方法1);尋找方法二是通過一點作為投影中心,作出該直線在平面內(nèi)的投影(如方法2)(2)若要借助于面面平行來證明線面平行,則先要確定一個平面經(jīng)過該直線且與已知平面平行,此目標(biāo)平面的尋找方法是經(jīng)過線段的端點作該平面的平行線(如方法3)第14頁/共35頁【變式練習(xí)1】如圖,在三棱柱ABCA1B1C1中,點D、E分別是BC、B1C1的中點求證:(1)DE平面ACC1A1;(2)平面A1EB平面ADC1.第15頁/共35頁 111111111111111/./.BC
7、C BBBCCDEBCBCDECCCCACC ADEACC ADEACC A在側(cè)面中,又因為點、分別是、的中點,所以又平面,平面,所以平面【證明】第16頁/共35頁 11111111111111111111121/./.DECCDECCAACCDEAAADEAADAEADADCAEADCAEADCBDC EBDC EBDC EBEDCDCADCBEADCBEADCBEAEEBE由知,且,又,所以,所以四邊形是平行四邊形所以,又平面,平面,所以平面因為且,所以四邊形是平行四邊形所以,又平面,平面,所以平面因為,平面PI11111/.AEBAEAEBAEBADC,平面,所以平面平面第17頁/共35
8、頁與平行有關(guān)的探索性與平行有關(guān)的探索性問題問題【例2】如圖,在四棱柱ABCDA1B1C1D1中,已知DC2AB,ABDC,設(shè)E是DC上一點,試確定E點的位置,使D1E平面A1BD.第18頁/共35頁11111111111111111/././.EDCD EABDDEABDEABABEDBEADBEADADBEBEADAD EBD EABABABDD EABDD EABD方法:設(shè) 是的中點,則平面因為,所以四邊形為平行四邊形,所以,所以,故四邊形為平行四邊形,所以又平面,平面,所以平面【解析】第19頁/共35頁11111111111111112/./././.DADADHHBDDCED EABD
9、D HADD HABDHEABDD HEHHABDD HED ED HED EABD方法:過作的平行線交的延長線于,過 作的平行線交于,則平面證明:因為,所以平面同理,平面,又,所以平面平面又平面,所以平面I第20頁/共35頁 這是一道探索性問題,常先確定E的位置,再進行證明而確定E的位置,可在過點D1且與平面A1BD的平行平面內(nèi)中(如方法2),或與平面A1BD內(nèi)直線平行的直線中(如方法1),找出確定的點E.第21頁/共35頁【變式練習(xí)2】如圖,在四棱錐PABCD中,底面ABCD為菱形,BAD60,Q為AD的中點點M在線段PC上,PMtPC,試確定實數(shù)t的值,使得PA平面MQB.第22頁/共3
10、5頁1/.3./.11.2323/./.tPAMQBACACBQOOMAOQCOBADBCAOQCOBAOAQAOOCCBACCAPCOMCOCMACPOCMCACPCAPCOMCPACMOAPOMOMMQBPAMQBPAMQB當(dāng) 時,平面連結(jié),設(shè),連結(jié)在與中,因為,所以所以,所以在與中,因為,所以,所以,所以因為平面,平面,所析平面【】以解第23頁/共35頁1.給出以下四個命題:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行;如果一條直線同時平行于兩個不重合的平面,那么這兩個平面平行;如果兩條直線都平行于一個平面,那么這兩條直線互相平行;如果一個平面經(jīng)過
11、另一個平面的一條平行線,那么這兩個平面互相平行其中真命題的序號是_.第24頁/共35頁2.如圖,在正方體ABCDA1B1C1D1中,點O是AC上一動點,P、Q分別為DD1、CC1的中點,則平面AOP與平面BQD1的位置關(guān)系是_.平行第25頁/共35頁3.已知在三棱錐PABC中,點M、N分別是PAB和PBC的重心,若ACa,則MN_3a第26頁/共35頁.2132232211.3323PMABDPNBCEDEMNPABPBCPMPNDEPDPEACMNACaDEMNDEACaVV連結(jié)并延長交于點,連結(jié)并延長交于點,連結(jié)因為點、分別是和的重心,所以,所以,因為,所以【解析】第27頁/共35頁4.在
12、四面體ABCD中,M、N分別是ACD和BCD的重心,則四面體的四個面中與MN平行的是_.平面ABC和平面ABD第28頁/共35頁.2/.1/./.DMDNACBCQPMNACDBCDPQBCACDMDNMNPQMQNPMNABCPQABCMNABCMNABD如圖所示,連結(jié)、,并延長分別與、相交于點、因為、分別是和的重心,所以、分別是、的中點,且,所以而平面,平面,所以平面同理可得平面【解析】第29頁/共35頁5.如圖,已知有公共邊AB的兩個全等的矩形ABCD和ABEF不在同一個平面內(nèi),P、Q分別是對角線AE、BD上的點,且APDQ.求證:PQ平面CBE.第30頁/共35頁1/./,.PMABB
13、EMQNABBCNPMEPPMQNABEAQNBQCDBDAPDQABCDEABDPMQNPMNQPQ MNPQCBEMNCBEPQCBE方法:如圖,作交于,作交于則,且又,所以所以四邊形是平行四邊形,所以因為平面,平面,故平面【證明】PP第31頁/共35頁2/././.,/././.PRBEABRRQPRCBEBECBEPRCBEAPARPRBEAEABARDQAEBDAPDQABDBRQADRQBCRQBCRQCBEBCCBERQCBEPRRQRPRQCBEPQ方法:如圖,作交于,連結(jié)因為平面,平面,所以平面因為,所以又因為兩矩形全等,所以又,故從而,所以因為,平面,平面,所以平面又,所以
14、平面平面因為平I/.PRQPQCBE面,所以平面第32頁/共35頁3().,.,/./.AQBCGEGAQDQADQGBQQGQBAQDQAGDBDQAPDBAEAQAPPQEGAGAEPQCBEEGCBEPQCBE方法:如圖,連結(jié)并延長與或其延長線 相交于點,連結(jié)易知,所以即因為,所以所以又平面,平面,所以平面VV第33頁/共35頁 1/.2/3“”“”ababaababOI證明直線與平面平行的步驟是:說明;尋找;證明;由線面平行的判定定理得利用面面平行判定定理證明面面平行時注意,這三個條件缺一不可證明平行問題時要注意 轉(zhuǎn)化思想 的應(yīng)用,要抓住線線、線面、面面之間平行關(guān)系,實現(xiàn) 空間問題 與 平面問題 之間的轉(zhuǎn)化第34頁/共35頁