備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過(guò) 考點(diǎn)06 二次函數(shù)與冪函數(shù) 理(含解析)
《備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過(guò) 考點(diǎn)06 二次函數(shù)與冪函數(shù) 理(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過(guò) 考點(diǎn)06 二次函數(shù)與冪函數(shù) 理(含解析)(25頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、考點(diǎn)06二次函數(shù)與冪函數(shù) (1)了解冪函數(shù)的概念. (2)結(jié)合函數(shù)的圖象,了解它們的變化情況. 一、二次函數(shù) 1.二次函數(shù)的概念 形如的函數(shù)叫做二次函數(shù). 2.表示形式 (1)一般式:f(x)=ax2+bx+c(a≠0). (2)頂點(diǎn)式:f(x)=a(x?h)2+k(a≠0),其中(h,k)為拋物線的頂點(diǎn)坐標(biāo). (3)兩根式:f(x)=a(x?x1)(x?x2)(a≠0),其中x1,x2是拋物線與x軸交點(diǎn)的橫坐標(biāo). 3.二次函數(shù)的圖象與性質(zhì) 函數(shù)解析式 圖象(拋物線) 定義域 R 值域 對(duì)稱性 函數(shù)圖象關(guān)于直線對(duì)稱 頂點(diǎn)坐標(biāo)
2、 奇偶性 當(dāng)b=0時(shí)是偶函數(shù),當(dāng)b≠0時(shí)是非奇非偶函數(shù) 單調(diào)性 在上是減函數(shù); 在上是增函數(shù). 在上是增函數(shù); 在上是減函數(shù). 最值 當(dāng)時(shí), 當(dāng)時(shí), 4.常用結(jié)論 (1)函數(shù)f(x)=ax2+bx+c(a≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)是方程ax2+bx+c=0的實(shí)根. (2)若x1,x2為f(x)=0的實(shí)根,則f(x)在x軸上截得的線段長(zhǎng)應(yīng)為|x1?x2|=. (3)當(dāng)且()時(shí),恒有f(x)>0();當(dāng)且()時(shí),恒有f(x)<0(). 二、冪函數(shù) 1.冪函數(shù)的概念 一般地,形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中底數(shù)x為自變量,α為常數(shù). 2.幾個(gè)常見(jiàn)
3、冪函數(shù)的圖象與性質(zhì) 函數(shù) 圖象 定義域 值域 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 非奇非偶函數(shù) 奇函數(shù) 單調(diào)性 在上單調(diào)遞增 在上單調(diào)遞減;在上單調(diào)遞增 在上單調(diào)遞增 在上單調(diào)遞增 在和上單調(diào)遞減 過(guò)定點(diǎn) 過(guò)定點(diǎn) 過(guò)定點(diǎn) 3.常用結(jié)論 (1)冪函數(shù)在上都有定義. (2)冪函數(shù)的圖象均過(guò)定點(diǎn). (3)當(dāng)時(shí),冪函數(shù)的圖象均過(guò)定點(diǎn),且在上單調(diào)遞增. (4)當(dāng)時(shí),冪函數(shù)的圖象均過(guò)定點(diǎn),且在上單調(diào)遞減. (5)冪函數(shù)在第四象限無(wú)圖象. 考向一 求二次函數(shù)或冪函數(shù)的解析式 1.求二次函數(shù)
4、解析式的方法 求二次函數(shù)的解析式,一般用待定系數(shù)法,其關(guān)鍵是根據(jù)已知條件恰當(dāng)選擇二次函數(shù)解析式的形式.一般選擇規(guī)律如下: 2.求冪函數(shù)解析式的方法 冪函數(shù)的解析式是一個(gè)冪的形式,且需滿足: (1)指數(shù)為常數(shù); (2)底數(shù)為自變量; (3)系數(shù)為1. 典例1若函數(shù)是冪函數(shù),且滿足,則 A. B. C. D.?3 【答案】A 【解析】由題意可設(shè)為常數(shù)), 因?yàn)闈M足,所以,所以, 所以,所以. 故選A. 1.已知冪函數(shù)的圖象經(jīng)過(guò)點(diǎn)8,4,則不等式f6x+3≤9的解集為_(kāi)______. 考向二冪函數(shù)的圖象及性質(zhì)的應(yīng)用 1.冪函數(shù)y=xα的圖象與性質(zhì),由于α
5、值的不同而比較復(fù)雜,一般從兩個(gè)方面考查: ①α的正負(fù):當(dāng)α>0時(shí),圖象過(guò)原點(diǎn),在第一象限的圖象上升;當(dāng)α<0時(shí),圖象不過(guò)原點(diǎn),在第一象限的圖象下降,反之也成立. ②冪函數(shù)的指數(shù)與圖象特征的關(guān)系 當(dāng)α≠0,1時(shí),冪函數(shù)y=xα在第一象限的圖象特征如下: α α>1 0<α<1 α<0 圖象 特殊點(diǎn) 過(guò)(0,0),(1,1) 過(guò)(0,0),(1,1) 過(guò)(1,1) 凹凸性 下凸 上凸 下凸 單調(diào)性 遞增 遞增 遞減 舉例 y=x2 、 2.利用冪函數(shù)的單調(diào)性比較冪值大小的技巧: 結(jié)合冪值的特點(diǎn)利用指數(shù)冪的運(yùn)算性質(zhì)化成同指數(shù)冪,選擇適
6、當(dāng)?shù)膬绾瘮?shù),借助其單調(diào)性進(jìn)行比較. 典例2 如圖所示的曲線是冪函數(shù)在第一象限的圖象,已知,相應(yīng)曲線對(duì)應(yīng)的值依次為 A. B. C. D. 【答案】B 【解析】結(jié)合冪函數(shù)的單調(diào)性及圖象,易知曲線對(duì)應(yīng)的值依次為. 故選B. 2.已知函數(shù)f(x)=(m2-m-1)xm2+2m-3是冪函數(shù),且其圖象與兩坐標(biāo)軸都沒(méi)有交點(diǎn),則實(shí)數(shù)m= A.-1 B.2 C.3 D.2或-1 典例3 設(shè),則的大小關(guān)系是 A.a(chǎn)>c>b B.a(chǎn)>b>c C.c>a>b D.b>c>a 【答案】A 【解析】因?yàn)樵谏鲜窃龊瘮?shù),所以 又因?yàn)樵谏鲜菧p函數(shù),所以. 綜上,a>c>b
7、. 故選A. 【名師點(diǎn)睛】同底數(shù)的兩個(gè)數(shù)比較大小,考慮用指數(shù)函數(shù)的單調(diào)性;同指數(shù)的兩個(gè)數(shù)比較大小,考慮用冪函數(shù)的單調(diào)性,有時(shí)需要取中間量. 3.已知,,,則下列結(jié)論成立的是 A. B. C. D. 考向三二次函數(shù)的圖象及性質(zhì)的應(yīng)用 高考對(duì)二次函數(shù)圖象與性質(zhì)進(jìn)行單獨(dú)考查的頻率較低,常與一元二次方程、一元二次不等式等知識(shí)交匯命題,考查二次函數(shù)圖象與性質(zhì)的應(yīng)用,以選擇題、填空題的形式呈現(xiàn),有時(shí)也出現(xiàn)在解答題中,解題時(shí)要準(zhǔn)確運(yùn)用二次函數(shù)的圖象與性質(zhì),掌握數(shù)形結(jié)合的思想方法.常見(jiàn)類(lèi)型及解題策略: 1.圖象識(shí)別問(wèn)題 辨析二次函數(shù)的圖象應(yīng)從開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)以及圖象與坐標(biāo)軸的交
8、點(diǎn)等方面著手討論或逐項(xiàng)排除. 2.二次函數(shù)最值問(wèn)題的類(lèi)型及處理思路 (1)類(lèi)型:a.對(duì)稱軸、區(qū)間都是給定的;b.對(duì)稱軸動(dòng)、區(qū)間固定;c.對(duì)稱軸定、區(qū)間變動(dòng). (2)解決這類(lèi)問(wèn)題的思路:抓住“三點(diǎn)一軸”數(shù)形結(jié)合,三點(diǎn)是指區(qū)間的兩個(gè)端點(diǎn)和中點(diǎn),一軸指的是對(duì)稱軸,結(jié)合配方法,根據(jù)函數(shù)的單調(diào)性及分類(lèi)討論的思想即可完成. 3.解決一元二次方程根的分布問(wèn)題的方法 常借助于二次函數(shù)的圖象數(shù)形結(jié)合來(lái)解,一般從:a.開(kāi)口方向;b.對(duì)稱軸位置;c.判別式;d.端點(diǎn)函數(shù)值符號(hào)四個(gè)方面分析. 4.求解與二次函數(shù)有關(guān)的不等式恒成立問(wèn)題 往往先對(duì)已知條件進(jìn)行化簡(jiǎn),轉(zhuǎn)化為下面兩種情況: (1)ax2+bx+
9、c>0,a≠0恒成立的充要條件是. (2)ax2+bx+c<0,a≠0恒成立的充要條件是. 另外,也可以采取分離變量法,把問(wèn)題轉(zhuǎn)化為不等式f(x)>A在區(qū)間D上恒成立,此時(shí)就等價(jià)于在區(qū)間D上f(x)min>A,接下來(lái)求出函數(shù)f(x)的最小值;若不等式f(x)
10、題主要考查二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵. 4.已知函數(shù)fx=4x2-kx-8在5,20上具有單調(diào)性,則實(shí)數(shù)k的取值范圍為 A.-∞,40 B.160,+∞ C.40,160 D.-∞,40∪160,+∞ 典例5 已知函數(shù),若對(duì)于任意的都有,則實(shí)數(shù)的取值范圍為. 【答案】 【解析】根據(jù)題意,得 解得. 5.若函數(shù)fx=x2-2x+1在區(qū)間a,a+2上的最小值為4,則a的取值集合為 A.-3,3 B.-1,3 C.-3,3 D.-1,-3,3 1.若冪函數(shù)f(x)的圖象過(guò)點(diǎn)(2,2),則函數(shù)y=f(x)+1-x的最大值為
11、 A.1 B. C.2 D. 2.已知,,,則的大小關(guān)系是 A. B. C. D. 3.在區(qū)間內(nèi)任取一實(shí)數(shù),的圖象與軸有公共點(diǎn)的概率為 A. B. C. D. 4.已知,若為奇函數(shù),且在上單調(diào)遞增,則實(shí)數(shù)的值是 A.?1,3 B.,3 C.?1,,3 D.,,3 5.已知函數(shù)f(x)=ax-2+7(a>0且a≠1)的圖象恒過(guò)定點(diǎn)P,若定點(diǎn)P在冪函數(shù)g(x)的圖象上,則冪函數(shù)g(x)的圖象是 A. B. C. D. 6.已知函數(shù)的圖象如圖所示,則的大小關(guān)系為 A. B. C. D. 7.已知函數(shù),則 A.,使得 B. C.,使
12、得 D.,使得 8.已知:冪函數(shù)在上單調(diào)遞增;,則是的 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 9.已知冪函數(shù)的圖象過(guò)點(diǎn),則函數(shù)在區(qū)間上的最小值是 A. B.0 C. D. 10.已知函數(shù)的定義域是R,則實(shí)數(shù)a的取值范圍是 A. B. C. D. 11.已知點(diǎn)在冪函數(shù)的圖象上,設(shè),則的大小關(guān)系為 A. B. C. D. 12.已知函數(shù)(其中,且)在區(qū)間上單調(diào)遞增,則函數(shù)的定義域?yàn)? A. B. C. D. 13.已知函數(shù)既是二次函數(shù)又是冪函數(shù),函數(shù)是上的奇函數(shù),函數(shù),則A.0 B.2018 C.403
13、6 D.4037 14.已知冪函數(shù)(α是實(shí)數(shù))的圖象經(jīng)過(guò)點(diǎn),則f(4)的值為_(kāi)___________. 15.已知xα+x-α=25,x>1,α<0,則xα-x-α=____________. 16.若冪函數(shù)f(x)=(m2-2m+1)x2m-1在(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值為_(kāi)___________. 17.已知函數(shù)y=x2-2x+a的定義域?yàn)镽,值域?yàn)閇0,+∞),則實(shí)數(shù)a的取值集合為_(kāi)___________. 18.已知函數(shù),則函數(shù)的最小值是__________. 19.已知實(shí)數(shù)滿足,則的取值范圍是__________. 20.已知二次函數(shù)f(x)的最小值為
14、1,且f(x)=f(2-x),f(0)=3. (1)求f(x)的解析式; (2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍. 21.已知冪函數(shù)f(x)=(m-1)2xm2-4m+3(m∈R)在(0,+∞)上單調(diào)遞增. (1)求m的值及f(x)的解析式; (2)若函數(shù)g(x)=-3f(x)2+2ax+1-a在[0,2]上的最大值為3,求實(shí)數(shù)a的值. 22.已知fx=-4x2+4ax-4a-a2. (1)當(dāng)a=1,x∈1,3時(shí),求函數(shù)fx的
15、值域; (2)若函數(shù)fx在區(qū)間0,1內(nèi)有最大值-5,求a的值. 23.已知函數(shù),其中為常數(shù). (1)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍; (2)若,都有,求實(shí)數(shù)的取值范圍. 1.(2017年高考浙江卷)若函數(shù)f(x)=x2+ ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M – m A.與a有關(guān),且與b有關(guān) B.與a有關(guān),但與b無(wú)關(guān) C.與a無(wú)關(guān),且與b無(wú)關(guān) D.與a無(wú)關(guān),但與b有關(guān) 2.(2017年高考山東卷理科)已知當(dāng)時(shí),函數(shù)的圖象與的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)的取
16、值范圍是 A. B. C. D. 3.(2016年高考新課標(biāo)III卷理科)已知,,,則 A. B. C. D. 4.(2019年高考浙江卷)已知,函數(shù),若存在,使得,則實(shí)數(shù)的最大值是___________. 變式拓展 1.【答案】-5,4 【解析】由題意知,故, 由于fx=x23=3x2為R上的偶函數(shù)且在0,+∞上單調(diào)遞增, f6x+3≤9即為f6x+3≤f27, 所以6x+3≤27,解得-5≤x≤4. 2.【答案】A 【解析】∵函數(shù)f(x)=(m2-m-1)xm2+2m-3是冪函數(shù), ∴m2-m-1=1,解得:m=2或m=-1, 當(dāng)m=2時(shí),,其圖象與
17、兩坐標(biāo)軸有交點(diǎn),不符合題意; 當(dāng)m=-1時(shí),,其圖象與兩坐標(biāo)軸都沒(méi)有交點(diǎn),符合題意, 故m=-1. 故選A. 3.【答案】A 【解析】,, ,,即, , 故. 選A. 【名師點(diǎn)睛】本題主要考查了比較大小問(wèn)題,其中解答中熟練運(yùn)用冪函數(shù)與指數(shù)函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.求解時(shí),根據(jù)冪函數(shù)在上為單調(diào)遞增函數(shù),得出,再根據(jù)指數(shù)函數(shù)的性質(zhì)得,即可得到結(jié)論. 4.【答案】D 【解析】因?yàn)楹瘮?shù)fx=4x2-kx-8在5,20上具有單調(diào)性,所以或,解得k≥160或k≤40. 故實(shí)數(shù)k的取值范圍為-∞,40∪160,+∞. 選D. 5.【答案】C 【解
18、析】∵函數(shù)f(x)=x2﹣2x+1=(x﹣1)2,
∴函數(shù)f(x)圖象的對(duì)稱軸為x=1,
∵在區(qū)間[a,a+2]上的最小值為4,
∴當(dāng)1≤a時(shí),函數(shù)的最小值為f(a)=(a﹣1)2=4,則a=﹣1(舍去)或a=3;
當(dāng)a+2≤1,即a≤﹣1時(shí),函數(shù)的最小值為f(a+2)=(a+1)2=4,則a=1(舍去)或a=﹣3;
當(dāng)a<1<a+2,即-1
19、=-x-122+54,
故其最大值為.
故選B.
2.【答案】C
【解析】易知冪函數(shù)在上是減函數(shù),
,,即.
故選C.
3.【答案】D
【解析】∵函數(shù)的圖象與軸有公共點(diǎn),∴,解得或.
由幾何概型概率公式可得所求概率為.
故選D.
【名師點(diǎn)睛】解答幾何概型問(wèn)題的關(guān)鍵在于弄清題中的考察對(duì)象和對(duì)象的活動(dòng)范圍,當(dāng)考察對(duì)象為點(diǎn),且點(diǎn)的活動(dòng)范圍在線段上時(shí),可用線段長(zhǎng)度比計(jì)算,然后根據(jù)公式計(jì)算即可.求解本題時(shí),先由二次函數(shù)的判別式大于等于零求出實(shí)數(shù)的取值范圍,再根據(jù)幾何概型概率公式求解.
4.【答案】B
【解析】因?yàn)樵谏蠁握{(diào)遞增,所以,排除選項(xiàng)A,C;
當(dāng)時(shí),為非奇非偶函數(shù),不滿 20、足條件,排除D,
故選B.
【名師點(diǎn)睛】分別研究五個(gè)冪函數(shù)的奇偶性與單調(diào)性,從而可得結(jié)果.特殊法是“小題小做”的重要策略,排除法解答選擇題是高中數(shù)學(xué)一種常見(jiàn)的解題思路和方法,這種方法既可以提高做題速度和效率,又能提高準(zhǔn)確性,這種方法主要適合下列題型:(1)求值問(wèn)題(可將選項(xiàng)逐個(gè)驗(yàn)證);(2)求范圍問(wèn)題(可在選項(xiàng)中取特殊值,逐一排除);(3)圖象問(wèn)題(可以用函數(shù)性質(zhì)及特殊點(diǎn)排除);(4)解方程、求解析式、求通項(xiàng)、求前項(xiàng)和公式問(wèn)題等等.
5.【答案】D
【解析】由題意知,f2=a2-2+7=8,則定點(diǎn)P2,8,
設(shè)冪函數(shù)為gx=xα(是常數(shù)),
將P2,8代入得2α=8,故α=3,
21、即gx=x3,圖象為D中的圖象.
故選D.
6.【答案】A
【解析】由圖象可知,,得.
故選A.
【名師點(diǎn)睛】本題主要結(jié)合函數(shù)圖象,考查指數(shù)函數(shù)和冪函數(shù)的比較大小問(wèn)題,解決本題的關(guān)鍵是尋找中間值.
7.【答案】B
【解析】,函數(shù)的定義域?yàn)椋瘮?shù)的值域?yàn)?,并且函?shù)是單調(diào)遞增函數(shù),這樣A不成立,C根據(jù)單調(diào)性可知也不成立,D應(yīng)改為,故選B.
8.【答案】A
【解析】由題意,命題冪函數(shù)在上單調(diào)遞增,則,又,
所以是的充分不必要條件.
故選A.
9.【答案】B
【解析】由題設(shè)得,
故在上單調(diào)遞增,
則當(dāng)時(shí)取最小值,最小值為.
應(yīng)選B.
10.【答案】B
【解析】由題意 22、,要使函數(shù)的定義域是,
則對(duì)任意實(shí)數(shù)都成立,
當(dāng)時(shí)顯然成立;
當(dāng)時(shí),需,解得.
綜上,的取值范圍為.
故選B.
11.【答案】D
【解析】由題可得:,解得:,
所以,
因?yàn)椋?,?
又,
所以,
由在上單調(diào)遞增,可得,
所以.
故選D.
12.【答案】B
【解析】∵函數(shù)(其中,且)在區(qū)間上單調(diào)遞增,
∴
令.
故選B.
13.【答案】D
【解析】因?yàn)楹瘮?shù)既是二次函數(shù)又是冪函數(shù),所以,
因此,因此
故選D.
14.【答案】2
【解析】因?yàn)閮绾瘮?shù)的圖象過(guò)點(diǎn),所以,解得,
所以,則.
故答案為2.
15.【答案】
【解析】由xα+x-α 23、=25,得(xα+x-α)2=x2α+x-2α+2=20,解得x2α+x-2α=18,
則(xα-x-α)2=x2α+x-2α-2=18-2=16,
因?yàn)閤>1,α<0,所以根據(jù)冪函數(shù)的單調(diào)性,可得xα 24、】因?yàn)閤2-2x+a=(x-1)2+a-1,y=(x-1)2+a-1的定義域?yàn)镽,值域?yàn)閇0,+∞),所以a-1=0,即a=1,所以a的取值集合為{1}.
故答案為{1}.
18.【答案】
【解析】設(shè),則可化為
當(dāng)時(shí),有最小值,
即時(shí),函數(shù)的最小值是.
故答案為.
【名師點(diǎn)睛】求函數(shù)最值的常見(jiàn)方法有:
①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)值域,其關(guān)鍵在于正確化成完全平方式,并且一定要先確定其定義域;
②換元法:常用代數(shù)或三角代換法,用換元法求值域時(shí)需認(rèn)真分析換元參數(shù)的范圍變化;
③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時(shí),要注意基本不等式的使 25、用條件“一正、二定、三相等”;
④單調(diào)性法:首先確定函數(shù)的定義域,然后準(zhǔn)確地找出其單調(diào)區(qū)間,最后再根據(jù)其單調(diào)性求出函數(shù)的最值;
⑤圖象法:畫(huà)出函數(shù)圖象,根據(jù)圖象的最高和最低點(diǎn)求最值.
19.【答案】
【解析】由,可得.
又,所以,解得.
所以.
結(jié)合,
可得.
故答案為.
【名師點(diǎn)睛】本題主要考查求二次函數(shù)值域,需要注意定義域,屬于中檔題.求解時(shí),先由得,再由,利用二次函數(shù)性質(zhì)求值域即可.
20.【答案】(1)f(x)=2x2-4x+3;(2)(-∞,-1).
【解析】(1)根據(jù)題意,f(x)是二次函數(shù),且f(x)=f(2-x),
可得函數(shù)f(x)的對(duì)稱軸為x=1,
26、
又其最小值為1,可設(shè)f(x)=a(x-1)2+1,
又因?yàn)閒(0)=3,則a+1=3,解可得a=2,
則f(x)=2(x-1)2+1=2x2-4x+3.
(2)根據(jù)題意,2x2-4x+3>2x+2m+1在[-1,1]上恒成立,化簡(jiǎn)得m 27、:m=0,
故fx=x3.
(2)由于fx=x3,
所以函數(shù)gx=-3f(x)2+2ax+1-a=-x2+2ax+1-a,
則函數(shù)圖象為開(kāi)口方向向下的拋物線,對(duì)稱軸為x=a,
由于在0,2上的最大值為3,
①當(dāng)a≥2時(shí),gx在0,2上單調(diào)遞增,
故:g(x)max=g2=3a-3=3,
解得a=2.
②當(dāng)a≤0時(shí),gx在0,2上單調(diào)遞減,
故:g(x)max=g0=1-a=3,
解得:a=-2.
③當(dāng)0
28、2.
22.【答案】(1)-29,-5;(2)a=-54或a=-5.
【解析】(1)當(dāng)a=1時(shí),fx=-4x2+4x-5,
其圖象的對(duì)稱軸為x=12,開(kāi)口向下,
x∈1,3時(shí),函數(shù)fx單調(diào)遞減,
當(dāng)x=1時(shí),函數(shù)有最大值f1=-5,
當(dāng)x=3時(shí),函數(shù)有最小值f3=-29,
故函數(shù)fx的值域?yàn)?29,-5;
(2)∵fx=-4x2+4ax-4a-a2的圖象開(kāi)口向下,對(duì)稱軸為x=12a,
①當(dāng)12a≥1,即a≥2時(shí),fx在0,1上單調(diào)遞增,函數(shù)的最大值為f1=-4-a2.
令-4-a2=-5,得a2=1,a=±1<2(舍去).
②當(dāng)0<12a<1,即0
29、,fx的最大值為-4a,
令-4a=-5,得a=-54∈0,2.
③當(dāng)12a≤0,即a≤0時(shí),fx在0,1上單調(diào)遞減,
∴x=0時(shí),fx的最大值為-4a-a2,
令-4a-a2=-5,得a2+4a-5=0,解得,或a=1(舍去).
綜上所述,a=-54或.
23.【答案】(1);(2).
【解析】(1)因?yàn)殚_(kāi)口向上,
所以該函數(shù)圖象的對(duì)稱軸是,
因此,即,
所以的取值范圍是.
(2)因?yàn)楹愠闪ⅲ?
所以,整理得,解得,
因此,的取值范圍是.
【名師點(diǎn)睛】(1)根據(jù)二次函數(shù)性質(zhì)得對(duì)稱軸不在區(qū)間內(nèi),解不等式可得實(shí)數(shù)的取值范圍.(2)根據(jù)二次函數(shù)圖象可得在x軸上方,即,解得 30、實(shí)數(shù)的取值范圍.
研究二次函數(shù)單調(diào)性的思路:
①二次函數(shù)的單調(diào)性在其圖象對(duì)稱軸的兩側(cè)不同,因此研究二次函數(shù)的單調(diào)性時(shí)要依據(jù)其圖象的對(duì)稱軸進(jìn)行分類(lèi)討論.
②若已知f(x)=ax2+bx+c(a>0)在區(qū)間A上單調(diào)遞減(單調(diào)遞增),則A?(A?),即區(qū)間A一定在函數(shù)對(duì)稱軸的左側(cè)(右側(cè)).
直通高考
1.【答案】B
【解析】因?yàn)樽钪翟谥腥?,所以最值之差一定與無(wú)關(guān).
故選B.
【名師點(diǎn)睛】對(duì)于二次函數(shù)的最值或值域問(wèn)題,通常先判斷函數(shù)圖象對(duì)稱軸與所給自變量閉區(qū)間的關(guān)系,結(jié)合圖象,當(dāng)函數(shù)圖象開(kāi)口向上時(shí),若對(duì)稱軸在區(qū)間的左邊,則函數(shù)在所給區(qū)間內(nèi)單調(diào)遞增;若對(duì)稱軸在區(qū)間的右邊,則函數(shù)在所給 31、區(qū)間內(nèi)單調(diào)遞減;若對(duì)稱軸在區(qū)間內(nèi),則函數(shù)圖象頂點(diǎn)的縱坐標(biāo)為最小值,區(qū)間端點(diǎn)距離對(duì)稱軸較遠(yuǎn)的一端取得函數(shù)的最大值.
2.【答案】B
【解析】當(dāng)時(shí),,在時(shí)單調(diào)遞減,且,在時(shí)單調(diào)遞增,且,此時(shí)有且僅有一個(gè)交點(diǎn);
當(dāng)時(shí),,在上單調(diào)遞增,所以要有且僅有一個(gè)交點(diǎn),需.
故選B.
【名師點(diǎn)睛】已知函數(shù)有零點(diǎn)求參數(shù)的取值范圍常用的方法和思路:
(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)的取值范圍;
(2)分離參數(shù)法:將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域的問(wèn)題加以解決;
(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.
3.【答案】A
【解析】因?yàn)椋?
所以.
故選A.
【技巧點(diǎn)撥】比較指數(shù)的大小常常根據(jù)三個(gè)數(shù)的結(jié)構(gòu)聯(lián)系相關(guān)的指數(shù)函數(shù)與對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性來(lái)判斷,如果兩個(gè)數(shù)指數(shù)相同,底數(shù)不同,則考慮冪函數(shù)的單調(diào)性;如果指數(shù)不同,底數(shù)相同,則考慮指數(shù)函數(shù)的單調(diào)性;如果涉及對(duì)數(shù),則聯(lián)系對(duì)數(shù)的單調(diào)性來(lái)解決.
4.【答案】
【解析】存在,使得,
即有,
化為,
可得,
即,
由,可得.
則實(shí)數(shù)的最大值是.
【名師點(diǎn)睛】本題考查函數(shù)的解析式及二次函數(shù),結(jié)合函數(shù)的解析式可得,去絕對(duì)值化簡(jiǎn),結(jié)合二次函數(shù)的最值及不等式的性質(zhì)可求解.
25
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷(xiāo)售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷(xiāo)售話術(shù)和技巧
- 銷(xiāo)售技巧:接近客戶的8種套路
- 銷(xiāo)售套路總結(jié)
- 房產(chǎn)銷(xiāo)售中的常見(jiàn)問(wèn)題及解決方法
- 銷(xiāo)售技巧:值得默念的成交話術(shù)
- 銷(xiāo)售資料:讓人舒服的35種說(shuō)話方式
- 汽車(chē)銷(xiāo)售績(jī)效管理規(guī)范
- 銷(xiāo)售技巧培訓(xùn)課件:絕對(duì)成交的銷(xiāo)售話術(shù)
- 頂尖銷(xiāo)售技巧總結(jié)
- 銷(xiāo)售技巧:電話營(yíng)銷(xiāo)十大定律
- 銷(xiāo)售逼單最好的二十三種技巧
- 銷(xiāo)售最常遇到的10大麻煩
- 銷(xiāo)售資料:銷(xiāo)售10大黃金觀念
- 銷(xiāo)售資料:導(dǎo)購(gòu)常用的搭訕?lè)椒?/a>