秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

(廣西課標版)2020版高考數學二輪復習 專題能力訓練11 等差數列與等比數列 文

上傳人:Sc****h 文檔編號:121499601 上傳時間:2022-07-19 格式:DOCX 頁數:10 大?。?.35MB
收藏 版權申訴 舉報 下載
(廣西課標版)2020版高考數學二輪復習 專題能力訓練11 等差數列與等比數列 文_第1頁
第1頁 / 共10頁
(廣西課標版)2020版高考數學二輪復習 專題能力訓練11 等差數列與等比數列 文_第2頁
第2頁 / 共10頁
(廣西課標版)2020版高考數學二輪復習 專題能力訓練11 等差數列與等比數列 文_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(廣西課標版)2020版高考數學二輪復習 專題能力訓練11 等差數列與等比數列 文》由會員分享,可在線閱讀,更多相關《(廣西課標版)2020版高考數學二輪復習 專題能力訓練11 等差數列與等比數列 文(10頁珍藏版)》請在裝配圖網上搜索。

1、專題能力訓練11 等差數列與等比數列 一、能力突破訓練 1.已知數列{an}為等比數列,且a8a9a10=-a132=-1 000,則a10a12=(  ) A.100 B.-100 C.10010 D.-10010 2.在等差數列{an}中,a1+a2+a3=3,a18+a19+a20=87,則此數列前20項的和等于(  ) A.290 B.300 C.580 D.600 3.設{an}是等比數列,Sn是{an}的前n項和.若對任意正整數n,有an+2an+1+an+2=0,a1=2,則S101的值為(  ) A.2 B.200 C.-2 D.0 4.已知{an}是等差數列,

2、公差d不為零,前n項和是Sn.若a3,a4,a8成等比數列,則(  ) A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 5.在等比數列{an}中,滿足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52=15,則a1-a2+a3-a4+a5的值是(  ) A.3 B.5 C.-5 D.5 6.在數列{an}中,a1=2,an+1=2an,Sn為{an}的前n項和.若Sn=126,則n=     .? 7.(2019四川內江等六市二診,14)中國古代數學專著《九章算術》中有這樣一題:今有男子善走,日增

3、等里,九日走1 260里,第一日、第四日、第七日所走之和為390里,則該男子第三日走的里數為     .? 8.設x,y,z是實數,若9x,12y,15z成等比數列,且1x,1y,1z成等差數列,則xz+zx=     .? 9.(2018全國Ⅲ,文17)在等比數列{an}中,a1=1,a5=4a3. (1)求{an}的通項公式; (2)記Sn為{an}的前n項和,若Sm=63,求m. 10.(2019全國Ⅰ,文18)記Sn為等差數列{an}的前n項和.已知S9=-a5. (1)若a3=4,求{an}的通項公式; (2)若a1>0,求使得Sn≥an的n的取

4、值范圍. 11.(2019山東濰坊四市聯考,17)已知數列{an},{bn}滿足:an+1+1=2an+n,bn-an=n,b1=2. (1)證明數列{bn}是等比數列,并求數列{bn}的通項公式; (2)求數列{an}的前n項和Sn. 二、思維提升訓練 12.已知數列{an},{bn}滿足a1=b1=1,an+1-an=bn+1bn=2,n∈N*,則數列{ban}的前10項的和為(  ) A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) 13.若數列{an}為等比

5、數列,且a1=1,q=2,則Tn=1a1a2+1a2a3+…+1anan+1等于(  ) A.1-14n B.231-14n C.1-12n D.231-12n 14.如圖,點列{An},{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+2,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N*.(P≠Q表示點P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則(  ) A.{Sn}是等差數列 B.{Sn2}是等差數列 C.{dn}是等差數列 D.{dn2}是等差數列 15.(2019河北武邑中學調研,15

6、)若兩個等差數列{an}和{bn}的前n項和分別是Sn,Tn,SnTn=5nn+5,則a10b9+b12+a11b8+b13=     .? 16.(2019江蘇常州高三期末,19)在數列{an}中,a1=1,且an+1+3an+4=0,n∈N*. (1)求證:{an+1}是等比數列,并求數列{an}的通項公式; (2)數列{an}中是否存在不同的三項按照一定順序重新排列后,構成等差數列?若存在,求滿足條件的項;若不存在,請說明理由. 17.若數列{an}是公差為正數的等差數列,且對任意n∈N*有an·Sn=2n3-n2. (1)求數列{an}的通項公

7、式; (2)是否存在數列{bn},使得數列{anbn}的前n項和為An=5+(2n-3)2n-1(n∈N*)?若存在,求出數列{bn}的通項公式及其前n項和Tn;若不存在,請說明理由. 專題能力訓練11 等差數列與等比數列 一、能力突破訓練 1.C 解析∵{an}為等比數列, ∴a8a9a10=-a132=a93=-1000, ∴a9=-10,a132=1000. 又a10a12=a102q2>0, ∴a10a12=|a9a13|=10010. 2.B 解析由a1+a2+a3=3,a18+a19+a20=87,得a1+a20=30,故S20=20×(a1+a20)2=300.

8、 3.A 解析設公比為q,∵an+2an+1+an+2=0,∴a1+2a2+a3=0,∴a1+2a1q+a1q2=0,∴q2+2q+1=0,∴q=-1.又a1=2,∴S101=a1(1-q101)1-q=2[1-(-1)101]1+1=2. 4.B 解析設{an}的首項為a1,公差為d,則a3=a1+2d,a4=a1+3d,a8=a1+7d. ∵a3,a4,a8成等比數列,∴(a1+3d)2=(a1+2d)(a1+7d),即3a1d+5d2=0. ∵d≠0,∴a1d=-53d2<0,且a1=-53d. ∵dS4=4d(a1+a4)2=2d(2a1+3d)=-23d2<0,故選B.

9、5.D 解析由條件知a1(1-q5)1-q=3,a12(1-q10)1-q2=15,則a1(1+q5)1+q=5, 故a1-a2+a3-a4+a5=a1[1-(-q)5]1-(-q)=a1(1+q5)1+q=5. 6.6 解析∵an+1=2an,即an+1an=2, ∴{an}是以2為公比的等比數列. 又a1=2, ∴Sn=2(1-2n)1-2=126.∴2n=64,∴n=6. 7.120 解析男子每天走的里數構成等差數列,設為{an},其公差為d,前n項和為Sn. 根據題意可知,S9=1260,a1+a4+a7=390, (方法一)∵S9=9(a1+a9)2=9a5=1260

10、,∴a5=140. 又a1+a4+a7=3a4=390,∴a4=130,∴d=a5-a4=10, ∴a3=a4-d=120. (方法二)由題意,得S9=1260,a1+a4+a7=390, 9a1+9×82d=1260,a1+a1+3d+a1+6d=390, 解得a1=100,d=10,所以a3=a1+2d=120. 8.3415 解析由題意知(12y)2=9x×15z,2y=1x+1z, 解得xz=1229×15y2=1615y2,x+z=3215y, 從而xz+zx=x2+z2xz=(x+z)2-2xzxz=(x+z)2xz-2=32152y21615y2-2=3415.

11、 9.解(1)設{an}的公比為q,由題設得an=qn-1. 由已知得q4=4q2,解得q=0(舍去)或q=-2或q=2. 故an=(-2)n-1或an=2n-1. (2)若an=(-2)n-1,則Sn=1-(-2)n3.由Sm=63得(-2)m=-188,此方程沒有正整數解. 若an=2n-1,則Sn=2n-1.由Sm=63得2m=64,解得m=6. 綜上,m=6. 10.解(1)設{an}的公差為d. 由S9=-a5,得a1+4d=0. 由a3=4,得a1+2d=4. 于是a1=8,d=-2. 因此{an}的通項公式為an=10-2n. (2)由(1)得a1=-4d,

12、故an=(n-5)d,Sn=n(n-9)d2. 由a1>0知d<0,故Sn≥an等價于n2-11n+10≤0,解得1≤n≤10. 所以n的取值范圍是{n|1≤n≤10,n∈N}. 11.解(1)因為bn-an=n,所以bn=an+n. 因為an+1=2an+n-1,所以an+1+(n+1)=2(an+n),即bn+1=2bn. 又b1=2,所以{bn}是首項為2,公比為2的等比數列,bn=2×2n-1=2n. (2)由(1)可得an=bn-n=2n-n, 所以Sn=(21+22+23+…+2n)-(1+2+3+…+n) =2(1-2n)1-2-n(1+n)2=2n+1-2-n2

13、+n2. 二、思維提升訓練 12.D 解析由a1=1,an+1-an=2,得an=2n-1. 由bn+1bn=2,b1=1得bn=2n-1. 則ban=2an-1=22(n-1)=4n-1, 故數列{ban}的前10項和為1-4101-4=13(410-1). 13.B 解析因為an=1×2n-1=2n-1,所以anan+1=2n-1·2n=22n-1=2×4n-1,所以1anan+1=12×14n-1. 所以1anan+1是等比數列. 故Tn=1a1a2+1a2a3+…+1anan+1=12×1×1-14n1-14=231-14n. 14.A 解析如圖,延長AnA1,BnB

14、1交于P,過An作對邊BnBn+1的垂線,其長度記為h1,過An+1作對邊Bn+1Bn+2的垂線,其長度記為h2, 則Sn=12|BnBn+1|h1,Sn+1=12|Bn+1Bn+2|h2. ∴Sn+1-Sn=12|Bn+1Bn+2|h2-12|BnBn+1|h1. ∵|BnBn+1|=|Bn+1Bn+2|, ∴Sn+1-Sn=12|BnBn+1|(h2-h1). 設此銳角為θ, 則h2=|PAn+1|sinθ,h1=|PAn|sinθ, ∴h2-h1=sinθ(|PAn+1|-|PAn|)=|AnAn+1|sinθ. ∴Sn+1-Sn=12|BnBn+1||AnAn+1|

15、sinθ. ∵|BnBn+1|,|AnAn+1|,sinθ均為定值,∴Sn+1-Sn為定值. ∴{Sn}是等差數列.故選A. 15.4 解析由等差數列的性質可得a10b9+b12+a11b8+b13=a10b1+b20+a11b1+b20=a1+a20b1+b20 =20(a1+a20)220(b1+b20)2=S20T20=5×2020+5=4. 16.解(1)因為an+1+3an+4=0,所以an+1+1an+1=-3an-3an+1=-3. 因為a1+1=2≠0,所以數列{an+1}是以2為首項,以-3為公比的等比數列, 所以an+1=2×(-3)n-1,即an=2×(-3

16、)n-1-1. (2)假設存在三項ar,as,at(r

17、r, 等式的右邊是-3的整數倍,左邊不是-3的整數倍,故等式不成立. ③若as+at=2ar,則2×(-3)s-1-1+2×(-3)t-1-1=4×(-3)r-1-2, 整理得(-3)s+(-3)t=2×(-3)r,兩邊同除以(-3)r, 可得(-3)s-r+(-3)t-r=2, 等式的左邊是-3的整數倍,右邊不是-3的整數倍,故等式不成立. 綜上,數列{an}中不存在不同的三項符合題意. 17.解(1)設等差數列{an}的公差為d,則d>0, an=dn+(a1-d),Sn=12dn2+a1-12dn. 對任意n∈N*,恒有 an·Sn=2n3-n2,則[dn+(a1-d

18、)]·12dn2+a1-12dn=2n3-n2, 即[dn+(a1-d)]·12dn+a1-12d=2n2-n. ∴12d2=2,12d(a1-d)+da1-12d=-1,(a1-d)a1-12d=0. ∵d>0,∴a1=1,d=2,∴an=2n-1. (2)∵數列{anbn}的前n項和為An=5+(2n-3)·2n-1(n∈N*), ∴當n=1時,a1b1=A1=4, ∴b1=4, 當n≥2時,anbn=An-An-1=5+(2n-3)2n-1-[5+(2n-5)2n-2]=(2n-1)2n-2. ∴bn=2n-2.假設存在數列{bn}滿足題設,且數列{bn}的通項公式bn=4,n=1,2n-2,n≥2, ∴T1=4,當n≥2時,Tn=4+1-2n-11-2=2n-1+3,當n=1時也適合, ∴數列{bn}的前n項和為Tn=2n-1+3. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!