(天津?qū)S茫?020屆高考數(shù)學一輪復(fù)習 考點規(guī)范練15 導數(shù)的綜合應(yīng)用(含解析)新人教A版
《(天津?qū)S茫?020屆高考數(shù)學一輪復(fù)習 考點規(guī)范練15 導數(shù)的綜合應(yīng)用(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(天津?qū)S茫?020屆高考數(shù)學一輪復(fù)習 考點規(guī)范練15 導數(shù)的綜合應(yīng)用(含解析)新人教A版(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、考點規(guī)范練15 導數(shù)的綜合應(yīng)用
一、基礎(chǔ)鞏固
1.已知函數(shù)f(x)=x3+ax2+bx+c在x=-23與x=1處都取得極值.
(1)求a,b的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于x∈[-1,2],不等式f(x)
2、,求證:f(x)≥a1-1x;
(3)若在區(qū)間(1,e)內(nèi),f(x)x-1>1恒成立,求實數(shù)a的取值范圍.
4.(2018全國Ⅰ,理21)已知函數(shù)f(x)=1x-x+aln x.
(1)討論f(x)的單調(diào)性;
(2)若f(x)存在兩個極值點x1,x2,證明:f(x1)-f(x2)x1-x2
3、a>0,且函數(shù)f(x)有兩個不相等的零點x1,x2,證明:x1+x2>2. 6.設(shè)函數(shù)f(x)=x2+bx-aln x. (1)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n. (2)若對任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0 成立,求實數(shù)a的取值范圍. 7.已知函數(shù)f(x)=ax-ln x. (1)過原點O作函數(shù)f(x)圖象的切線,求切點的橫坐標; (2)對?x∈[1,+∞),不等式f(x)≥a(2x-x2)恒成立,求實數(shù)a的取值范圍. 三、高考預(yù)測 8.(2018天津
4、,文20)設(shè)函數(shù)f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差為d的等差數(shù)列. (1)若t2=0,d=1,求曲線y=f(x)在點(0,f(0))處的切線方程; (2)若d=3,求f(x)的極值; (3)若曲線y=f(x)與直線y=-(x-t2)-63有三個互異的公共點,求d的取值范圍. 考點規(guī)范練15 導數(shù)的綜合應(yīng)用 1.解(1)∵f(x)=x3+ax2+bx+c, ∴f'(x)=3x2+2ax+b. 又f(x)在x=-23與x=1處都取得極值, ∴f'-23=129-43a+b=0,f'(1)=3+2a+b=0, 兩式
5、聯(lián)立解得a=-12,b=-2, ∴f(x)=x3-12x2-2x+c, f'(x)=3x2-x-2=(3x+2)(x-1), 令f'(x)=0,得x1=-23,x2=1, 當x變化時,f'(x),f(x)的變化情況如下表: x -∞,-23 -23 -23,1 1 (1,+∞) f'(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ ∴函數(shù)f(x)的遞增區(qū)間為-∞,-23與(1,+∞),遞減區(qū)間為-23,1. (2)f(x)=x3-12x2-2x+c,x∈[-1,2], 當x=-23時,f-23=2227+c為極大值,而f(2
6、)=2+c,則f(2)=2+c為最大值,要使f(x)
7、當h(x)在區(qū)間(0,+∞)內(nèi)只有一個零點.
(i)當a≤0時,h(x)>0,h(x)沒有零點;
(ii)當a>0時,h'(x)=ax(x-2)e-x.
當x∈(0,2)時,h'(x)<0;當x∈(2,+∞)時,h'(x)>0.
所以h(x)在區(qū)間(0,2)內(nèi)單調(diào)遞減,在區(qū)間(2,+∞)內(nèi)單調(diào)遞增.
故h(2)=1-4ae2是h(x)在區(qū)間[0,+∞)內(nèi)的最小值.
①若h(2)>0,則a
8、(0,2)內(nèi)有一個零點.
由(1)知,當x>0時,ex>x2,
所以h(4a)=1-16a3e4a=1-16a3(e2a)2>1-16a3(2a)4=1-1a>0.
故h(x)在區(qū)間(2,4a)內(nèi)有一個零點.因此h(x)在區(qū)間(0,+∞)內(nèi)有兩個零點.
綜上,f(x)在區(qū)間(0,+∞)內(nèi)只有一個零點時,a=e24.
3.(1)解∵f'(x)=ax,
∴f'(2)=a2=2,∴a=4.
(2)證明令g(x)=alnx-1+1x,
則g'(x)=a1x-1x2.
令g'(x)>0,得x>1;
g'(x)<0,得0 9、單調(diào)遞增.
所以g(x)的最小值為g(1)=0,
所以f(x)≥a1-1x.
(3)解要使f(x)x-1>1在區(qū)間(1,e)內(nèi)恒成立,即使alnxx-1-1>0在區(qū)間(1,e)內(nèi)恒成立,即alnx+1-xx-1>0在區(qū)間(1,e)內(nèi)恒成立.
令h(x)=alnx+1-x,
則h'(x)=ax-1.
令h'(x)>0,解得x 10、遞減,則需h(e)≥0,而h(e)=a+1-e<0,不符合題意.
綜上,實數(shù)a的取值范圍為[e-1,+∞).
4.(1)解f(x)的定義域為(0,+∞),f'(x)=-1x2-1+ax=-x2-ax+1x2.
①若a≤2,則f'(x)≤0,當且僅當a=2,x=1時f'(x)=0,所以f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減.
②若a>2,令f'(x)=0,得x=a-a2-42或x=a+a2-42.
當x∈0,a-a2-42∪a+a2-42,+∞時,f'(x)<0;
當x∈a-a2-42,a+a2-42時,f'(x)>0.
所以f(x)在區(qū)間0,a-a2-42,a+a2-42,+∞內(nèi)單 11、調(diào)遞減,在區(qū)間a-a2-42,a+a2-42內(nèi)單調(diào)遞增.
(2)證明由(1)知,f(x)存在兩個極值點當且僅當a>2.
由于f(x)的兩個極值點x1,x2滿足x2-ax+1=0,
所以x1x2=1.不妨設(shè)x1 12、1,+∞)時,g(x)<0.
所以1x2-x2+2lnx2<0,即f(x1)-f(x2)x1-x2 13、)知f(x)=ax2+(1-2a)x-c-lnx.
因為函數(shù)f(x)在x=1處取極值-1-c,所以f(1)=-a+1-c=-1-c,可得a=2.
因為a>0,由(1)可知函數(shù)f(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞增,在區(qū)間(0,1]上單調(diào)遞減,所以f(x)min=f(1)=-1-c.
因為不等式f(x)≥-2c2恒成立,
所以有-1-c≥-2c2,解得c≥1或c≤-12.
故實數(shù)c的取值范圍是c≥1或c≤-12.
(3)證明由(1)知f(x)=ax2+(1-2a)x-c-lnx,函數(shù)f(x)在(0,1]上單調(diào)遞減,在(1,+∞)內(nèi)單調(diào)遞增.
因為函數(shù)f(x)有兩個不相等的零點x1,x 14、2,
所以f(x1)=f(x2)=0.
若設(shè)x1 15、)內(nèi)單調(diào)遞增,所以x2>2-x1,即x1+x2>2,得證.
6.解(1)∵f(x)=x2+bx-alnx,
∴f'(x)=2x+b-ax(x>0).
∵x=2是函數(shù)f(x)的極值點,
∴f'(2)=4+b-a2=0.
∵1是函數(shù)f(x)的零點,
∴f(1)=1+b=0.
由4+b-a2=0,1+b=0,解得a=6,b=-1.
∴f(x)=x2-x-6lnx,f'(x)=2x-1-6x.
令f'(x)<0,得0 16、,+∞).
∵f(2) 17、(1,e),
則φ'(x)=4x-1>0,
故φ(x)在(1,e)內(nèi)單調(diào)遞增,φ(x)>φ(1)=1-a.
①當1-a≥0,即a≤1時,φ(x)>0,即h'(x)>0,h(x)在(1,e)內(nèi)單調(diào)遞增,
∴h(x)>h(1)=0,不符合題意.
②當1-a<0,即a>1時,φ(1)=1-a<0,φ(e)=2e2-e-a,
若a≥2e2-e>1,則φ(e)<0,
∴在(1,e)內(nèi)φ(x)<0恒成立,即h'(x)<0恒成立,
∴h(x)在(1,e)內(nèi)單調(diào)遞減,
∴存在x0∈(1,e),使得h(x0) 18、定存在實數(shù)m,使得φ(m)=0,
∴在(1,m)內(nèi)φ(x)<0恒成立,即h'(x)<0恒成立,h(x)在(1,m)內(nèi)單調(diào)遞減,∴存在x0∈(1,m),使得h(x0) 19、坐標為e.
(2)∵不等式ax-lnx≥a(2x-x2)恒成立,
∴等價于a(x2-x)≥lnx對?x∈[1,+∞)恒成立.
設(shè)y1=a(x2-x),y2=lnx,由于x∈[1,+∞),且當a≤0時,y1≤y2,故a>0.
設(shè)g(x)=ax2-ax-lnx,
當01時,a≥lnxx2-x恒成立,令h(x)=lnxx2-x.
又x>1時,lnx 20、=x3-x,故f'(x)=3x2-1.因此f(0)=0,f'(0)=-1.又因為曲線y=f(x)在點(0,f(0))處的切線方程為y-f(0)=f'(0)(x-0),故所求切線方程為x+y=0.
(2)由已知可得
f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t23+9t2.故f'(x)=3x2-6t2x+3t22-9.令f'(x)=0,解得x=t2-3或x=t2+3.
當x變化時,f'(x),f(x)的變化情況如下表:
x
(-∞,t2-3)
t2-3
(t2-3,t2+3)
t2+3
(t2+ 21、3,+∞)
f'(x)
+
0
-
0
+
f(x)
↗
極大值
↘
極小值
↗
所以函數(shù)f(x)的極大值為f(t2-3)=(-3)3-9×(-3)=63;函數(shù)f(x)的極小值為f(t2+3)=(3)3-9×3=-63.
(3)曲線y=f(x)與直線y=-(x-t2)-63有三個互異的公共點等價于關(guān)于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+63=0有三個互異的實數(shù)解.令u=x-t2,可得u3+(1-d2)u+63=0.
設(shè)函數(shù)g(x)=x3+(1-d2)x+63,則曲線y=f(x)與直線y=-(x-t2)-63有三個互異的公共點等價 22、于函數(shù)y=g(x)有三個零點.
g'(x)=3x2+(1-d2).
當d2≤1時,g'(x)≥0,這時g(x)在R上單調(diào)遞增,不合題意.
當d2>1時,令g'(x)=0,解得x1=-d2-13,x2=d2-13.
易得,g(x)在區(qū)間(-∞,x1)內(nèi)單調(diào)遞增,在區(qū)間[x1,x2]上單調(diào)遞減,在區(qū)間(x2,+∞)內(nèi)單調(diào)遞增.
g(x)的極大值g(x1)=g-d2-13=23(d2-1)329+63>0.
g(x)的極小值g(x2)=gd2-13=-23(d2-1)329+63.
若g(x2)≥0,由g(x)的單調(diào)性可知函數(shù)y=g(x)至多有兩個零點,不合題意.
若g(x2)<0,即(d2-1)32>27,也就是|d|>10,此時|d|>x2,g(|d|)=|d|+63>0,且-2|d|
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學下冊6整理和復(fù)習2圖形與幾何第7課時圖形的位置練習課件新人教版
- 2023年六年級數(shù)學下冊6整理和復(fù)習2圖形與幾何第1課時圖形的認識與測量1平面圖形的認識練習課件新人教版
- 2023年六年級數(shù)學下冊6整理和復(fù)習1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習課件新人教版
- 2023年六年級數(shù)學下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認識作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊2百分數(shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊1負數(shù)第1課時負數(shù)的初步認識作業(yè)課件新人教版
- 2023年六年級數(shù)學上冊期末復(fù)習考前模擬期末模擬訓練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學上冊易錯清單十二課件新人教版
- 標準工時講義
- 2021年一年級語文上冊第六單元知識要點習題課件新人教版
- 2022春一年級語文下冊課文5識字測評習題課件新人教版
- 2023年六年級數(shù)學下冊6整理和復(fù)習4數(shù)學思考第1課時數(shù)學思考1練習課件新人教版