《圓柱和圓錐的體積 (1)》由會員分享,可在線閱讀,更多相關《圓柱和圓錐的體積 (1)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、信息窗3 圓柱和圓錐的體積
教學目標:
1. 結合具體情境,通過探索與發(fā)現(xiàn),理解并掌握圓柱、圓錐體積的計算方法,并能解決簡單的實際問題。
2. 經歷探索圓柱、圓錐體積計算公式的過程,進一步發(fā)展空間觀念。
3. 在觀察與實驗、猜測與驗證、交流與反思等活動中,初步體會數(shù)學知識的產生、形成與發(fā)展的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學思想方法。
教學重點和難點:
圓柱、圓錐體積的計算方法,以及體積公式的探索推導過程。
教具準備:多媒體課件、圓錐、圓柱體積學具、沙子等。
第一課時
教學過程:
一、創(chuàng)設情境,激趣引入。
談話:同學們,天氣漸漸熱了,在夏季
2、同學們最喜歡的冷飲是什么?(生回答)
課件出示:兩個圓柱體冰淇淋。
談話:看,小明買了兩個冰淇淋,你能猜猜哪種包裝盒體積大嗎?
(生猜測)這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)
二、回憶舊知,實現(xiàn)遷移。
談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?
(學生回答后,教師利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關系,進而推導出圓面積計算公式的過程。)
㈠交流猜測
談話:通過剛才的回顧,你們能想辦法將圓柱轉
3、化成我們已經學過的立體圖形來求體積嗎?
生:我們學過長方體的體積,可不可以將圓柱轉化成長方體呢?
師談話:你的想法很好,怎樣轉化呢?
生討論,交流。
生匯報,可能會有以下幾種想法:
1.先在圓柱的底面上畫一個最大的正方形,再豎著切掉四周,得到一個長方體,然后把切下的四塊拼在一起。
2.可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。
3.如果是橡皮泥那樣的,可以把它重新捏成一個長方體,就能計算出它的體積了。
談話:請同學討論和評價一下,哪一種方法更合理呢?引導學生按照第二種方法進行驗證。
㈡實驗驗證
學生動手進行實驗。
談話:請每個小組拿出學具,按照剛才第3
4、小組的方法把它轉化為近似的長方體,并研究轉化后的長方體和原來圓柱體積、底面積、高之間的關系。
學生合作操作,集體研究、討論、記錄。
四、分析關系,總結公式
1.全班交流
談話:哪個小組愿意展示一下你們小組的研究結果?
引導學生發(fā)現(xiàn):
轉化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。
2.分析關系
引導說出:圓柱體轉化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。
3.總結公式。
談話:同學們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。
(課件分別演示將圓柱等分成16份、32份
5、、64份的割拼過程,學生觀察、思考。)
談話:你發(fā)現(xiàn)了什么?
引導觀察:分的份數(shù)越多,拼成的圖形就越接近長方體。
(課件動態(tài)演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)
談話:其實大家剛才又采用了“化圓為方”的方法將圓柱轉化成了長方體。你現(xiàn)在能總結出圓柱體積的計算公式嗎?說一說你是怎樣想的。
根據(jù)學生的回答教師板書:
長方體的體積 = 底面積 × 高
圓柱的體積 = 底面積 × 高
談話:你能用字母表示圓柱的體積計算公式嗎?V=Sh
五、利用公式,解決問題。
自主練習第1題、第2題、第3題
【設計意圖】鞏固練習及時讓學生利用結論解決問題,感受自己研究的
6、重要價值,激發(fā)學習數(shù)學的興趣。
六、課堂總結
第二課時
一、串聯(lián)情境 喚醒舊知。
1.談話:同學們,上節(jié)課我們通過研究冰淇淋盒的體積問題,學會了如何求圓柱的體積。你能說說如何求圓柱的體積嗎?計算公式是怎樣推出的?
2.口答練習:
你能借助公式計算下面圓柱的體積嗎?
(1)底面半徑 15厘米,高8厘米。
(2)底面直徑 6米,高18米。
【設計意圖】:通過復習公式,喚起學生的回憶,為下面利用公式解決打下基礎。
二、巧用公式,解決問題。
1.出示課后練習第3題。
在美國加利福尼亞洲發(fā)現(xiàn)了一棵高達142
7、米的巨衫。它的樹干上下幾乎一樣粗,橫截面周長約是38米。
師談話:你能提出什么問題?
生:樹干的體積會是多大呢?
師:知道了樹干橫截面的周長,該如何求體積呢?
2.學生獨立解答。
3.交流算法。
4.師生總結解決此類問題的步驟:
(1)根據(jù)周長求出底面的半徑。
(2)根據(jù)半徑求出底面的面積。
(3)根據(jù)體積公式求出樹干的體積。
三、綜合練習,統(tǒng)一公式。
1.出示課后練習第10題:計算下面圖形的體積。
2.交流算法。
3.師談話:你能把上面三種圖形的體積公式統(tǒng)一成一個嗎?
引導發(fā)現(xiàn):體積=底面積×高
四.拓展練習,提高能力。
1.出示練習第12題。
8、
引導學生發(fā)現(xiàn):體積相等、底面積也相等的圓柱和圓錐,圓錐的高是圓柱高的3倍。
2.出示練習13題。
(1)用62.8厘米的邊長做圓柱形小桶的底面周長,47.1厘米的邊長做圓柱小桶的高。
(2)用47.1厘米的邊長做圓柱形小桶的底面周長,62.8厘米的邊長做圓柱小桶的高。
3.課后思考:練習第14題。
第三課時
一、創(chuàng)設情境,提出問題。
談話:在炎熱的夏季里,同學們一定很喜歡吃冰淇淋吧?。ǔ鍪菊n件),看:超市里正在搞促銷活動呢,圓柱形的冰淇淋每個5元,圓錐形的冰淇淋每個2元。(圖中圓柱形和圓錐形的雪糕是等底等高的。)用10元錢怎樣買冰淇淋最合算呢?
談話:要解決這個問
9、題,需要先解決哪些問題?你有什么困難嗎?
談話:是啊,今天我們就一起來學習 “圓錐的體積”,相信你一定會自己找到答案的。引出課題:圓錐的體積
二、猜想驗證、研究問題。
1、引導猜想:
談話:請同學們猜測一下,圓錐的體積可能與什么有關系?有怎樣的關系?
2、實驗驗證:
①分組實驗,驗證猜想:
談話:下面,請同學們利用老師提供的實驗材料分組操作,自己找一找屏幕上的圓柱與圓錐體積間的關系,解決電腦博士給我們提出的問題。
課件出示思考題:???
(1) 通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關系?
(2) 你們的小組是怎樣進行實驗的????
?學生分組操作實驗,教
10、師巡回指導。(其中多數(shù)小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子等,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的,也有5倍關系的。
同組的學生做完實驗后,進行交流,并把實驗結果填寫在表格中。
②匯報交流。
展示不同的結論
⑴請這幾個小組同學說出他們是怎樣通過實驗得出這一結論的?(圓錐的體積是等底等高的圓柱體積的。)
⑵討論:哪個小組得出的結論更加科學合理一些?
(請他們拿出實驗用的器材,自己比劃、驗證這個結論。)
⑶引導學生自主修正另外兩個結論。?????
③總結圓錐體積的計算方法:V=Sh
④回歸
11、課前問題:你能分別算出這兩個冰淇淋的體積嗎?在練習本上試一試吧。
談話:用10元錢怎樣買冰淇淋最合算?說說你是怎樣想的?
三、應用公式、解決問題。
1、判斷。
①??圓錐的體積等于圓柱體積的。 (??????)???
②??兩個體積相等的等底圓柱和圓錐,??圓錐的高一定是圓柱高的3倍。?? (??????)?
③??一個圓錐形物體,底面積是?a?平方米,高是?b?米,它的體積是?ab?立方米。 (??????)????
④?把一根圓體木頭,削成一個最大的圓錐體,???削去體積是圓錐體積的2倍。 ?(??????)????
2、求下列各圓錐的體積:
a、底面面積是7.8平方米,高是1.8米;
b、底面半徑是4厘米,高是21厘米;
c、底面直徑是6分米,高是6分米;
3、解決問題。
??? ①?一堆圓錐形的煤堆,底面半徑是?1.5?米,高是?1.2?米。如果每立方米煤約重?1.4?噸,這堆煤有多少噸???
②有一塊正方體的木材,它的棱長是9分米,把這塊木料加工成一個最大的圓錐體,被削去的體積是多少?
四、全課總結
談話:通過本節(jié)課的學習,你有哪些收獲?
教后反思:
學生在學習中動手動口,極大的調動了他們的積極興。他們在爭論中學習,要爭論中掌握新知。學得比較扎實。