秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

周期函數(shù)的傅立葉級數(shù).ppt

上傳人:za****8 文檔編號:14280872 上傳時間:2020-07-15 格式:PPT 頁數(shù):49 大?。?.51MB
收藏 版權(quán)申訴 舉報 下載
周期函數(shù)的傅立葉級數(shù).ppt_第1頁
第1頁 / 共49頁
周期函數(shù)的傅立葉級數(shù).ppt_第2頁
第2頁 / 共49頁
周期函數(shù)的傅立葉級數(shù).ppt_第3頁
第3頁 / 共49頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《周期函數(shù)的傅立葉級數(shù).ppt》由會員分享,可在線閱讀,更多相關(guān)《周期函數(shù)的傅立葉級數(shù).ppt(49頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、8-5 傅里葉級數(shù)展開,研究周期(函數(shù))現(xiàn)象產(chǎn)生; 三角函數(shù)是最簡單的周期函數(shù); 任何周期函數(shù)都可以用正弦函數(shù)和余弦函數(shù)構(gòu)成的級數(shù)表示;,傅里葉(Fourier),也譯作傅立葉,法國數(shù)學(xué)家、物理學(xué)家。 1768年3月21日生于歐塞爾,1830年5月16日卒于巴黎。 9歲父母雙亡, 被當?shù)亟烫檬震B(yǎng)。 12歲由一主教送入地方軍事學(xué)校讀書。 17歲(1785)回鄉(xiāng)教數(shù)學(xué)。 1794到巴 黎,成為高等師范學(xué)校的首批學(xué)員,次年到巴黎綜合工科學(xué)校執(zhí)教。 1798年隨拿破侖遠征埃及時任軍中文書和埃及研究院秘書,1801年回國后任伊澤爾省地方長官。 1817年當選為科學(xué)院院士,1822年任該院終身秘書。 數(shù)學(xué)

2、方面 主要貢獻是在研究熱的傳播時創(chuàng)立了一套數(shù)學(xué)理論。1807年向巴黎科學(xué)院呈交熱的傳播論文,推導(dǎo)出著名的熱傳導(dǎo)方程 ,并在求解該方程時發(fā)現(xiàn)解函數(shù)可以由三角函數(shù)構(gòu)成的級數(shù)形式表示,從而提出任一函數(shù)都可以展成三角函數(shù)的無窮級數(shù)。傅立葉級數(shù)(即三角級數(shù))、傅立葉分析等理論均由此創(chuàng)始。 物理方面 他是傅立葉定律的創(chuàng)始人,1822 年在代表作熱的分析理論中解決了熱在非均勻加熱的固體中分布傳播問題,成為分析學(xué)在物理中應(yīng)用的最早例證之一,對19 世紀的理論物理學(xué)的發(fā)展產(chǎn)生深遠影響。,本節(jié)內(nèi)容,一、三角級數(shù)及三角函數(shù)系的正交性 二、周期函數(shù)展開為傅里葉級數(shù) 三、正弦級數(shù)和余弦級數(shù) 四、一般周期函數(shù)的傅里葉級數(shù)

3、 五、任意區(qū)間上非周期函數(shù)的傅里葉級數(shù) P316,自學(xué),三角函數(shù)公式:,誘導(dǎo)公式:,一、三角級數(shù)及三角函數(shù)系的正交性,簡單的周期運動:,(諧波函數(shù)),( A為振幅,,復(fù)雜的周期運動:,令,得函數(shù)項級數(shù),,,,,,,,,為角頻率,,為初相 ),(諧波迭加),,稱上述形式的級數(shù)為三角級數(shù).,2、三角函數(shù)系的正交性,,,基; 單位正交;,,,,,,,,,,,,,4、函數(shù)的周期性延拓(P312),,,,,,,,,,正弦級數(shù)為:,練習(xí) 將函數(shù),級數(shù) .,則,解: 將 f (x)延拓成以,展成傅里葉,2為周期的函數(shù) F(x) ,,利用此展式可求出幾個特殊的級數(shù)的和.,當 x = 0 時, f (0) =

4、0 , 得,,說明:,設(shè),已知,又,作業(yè):,P317,習(xí)題8-5,1(1) , 3。,小結(jié):,1. 周期為 2 的函數(shù)的傅里葉級數(shù)及收斂定理,其中,,注意: 若,為間斷點,,則級數(shù)收斂于,2. 周期為 2 的奇、偶函數(shù)的傅里葉級數(shù),奇函數(shù),,正弦級數(shù),偶函數(shù),,余弦級數(shù),3. 在 0 , 上函數(shù)的傅里葉展開法,作奇周期延拓 ,,展開為正弦級數(shù),作偶周期延拓 ,,展開為余弦級數(shù),1. 在 0 , 上的函數(shù)的傅里葉展開唯一嗎 ?,答: 不唯一 , 延拓方式不同級數(shù)就不同 .,思考:,處收斂于,2.,,則它的傅里葉級數(shù)在,在,處收斂于 .,提示:,設(shè)周期函數(shù)在一個周期內(nèi)的表達式為,,,,3

5、. 設(shè),又設(shè),求當,的表達式 .,解: 由題設(shè)可知應(yīng)對,作奇延拓:,,由周期性:,,為周期的正弦級數(shù)展開式的和函數(shù),,定義域,4. 寫出函數(shù),,傅氏級數(shù)的和函數(shù) .,,答案:,備用題 1.,,葉級數(shù)展式為,則其中系,提示:,,,,,利用“偶倍奇零”,,(93 考研),的傅里,2. 設(shè),是以 2 為周期的函數(shù) ,,其傅氏系數(shù)為,則,的傅氏系數(shù),提示:,令,,狄利克雷 (18 05 1859),,德國數(shù)學(xué)家.,對數(shù)論, 數(shù)學(xué)分析和,數(shù)學(xué)物理有突出的貢獻,,是解析數(shù)論,他是最早提倡嚴格化,方法的數(shù)學(xué)家.,函數(shù) f (x) 的傅里葉級數(shù)收斂的第一個充分條件;,了改變絕對收斂級數(shù)中項的順序不影響級數(shù)的和,,舉例說明條件收斂級數(shù)不具有這樣的性質(zhì).,他的主要,的創(chuàng)始人之一,,并,論文都收在狄利克雷論文集 (1889一1897)中.,1829年他得到了給定,證明,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!