《2018-2019學(xué)年高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程 2.2 雙曲線(xiàn) 2.2.1 雙曲線(xiàn)及其標(biāo)準(zhǔn)方程課件 新人教A版選修1 -1.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第二章 圓錐曲線(xiàn)與方程 2.2 雙曲線(xiàn) 2.2.1 雙曲線(xiàn)及其標(biāo)準(zhǔn)方程課件 新人教A版選修1 -1.ppt(24頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2.2雙曲線(xiàn) 2.2.1雙曲線(xiàn)及其標(biāo)準(zhǔn)方程,新知探求,課堂探究,新知探求 素養(yǎng)養(yǎng)成,知識(shí)點(diǎn)一,問(wèn)題1:在平面直角坐標(biāo)系中,若A(-5,0),B(5,0),當(dāng)||PA|-|PB||=6,||PA|-|PB||=10,||PA|-|PB||=12時(shí),點(diǎn)P的軌跡分別是什么圖形? 答案:當(dāng)||PA|-|PB||=6時(shí),點(diǎn)P的軌跡是以A(-5,0),B(5,0)為焦點(diǎn)的雙曲線(xiàn);當(dāng)||PA|-|PB||=10時(shí),點(diǎn)P的軌跡是兩條射線(xiàn);當(dāng)||PA|-|PB||=12時(shí),點(diǎn)P的軌跡不存在. 梳理平面內(nèi)與兩個(gè)定點(diǎn)F1,F2的距離 等于常數(shù)(小于|F1F2|且大于零)的點(diǎn)的軌跡叫做雙曲線(xiàn).這兩個(gè)定點(diǎn)叫雙曲
2、線(xiàn)的 ,兩焦點(diǎn)間的距離叫 .集合P=M|||MF1|-|MF2||=2a,|F1F2|=2c,其中a,c為常數(shù)且a0,c0.,雙曲線(xiàn)的定義,差的絕對(duì)值,焦點(diǎn),焦距,知識(shí)點(diǎn)二,雙曲線(xiàn)的標(biāo)準(zhǔn)方程,問(wèn)題2:怎樣利用雙曲線(xiàn)的標(biāo)準(zhǔn)方程確定焦點(diǎn)的位置? 答案:如果x2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在x軸上;如果y2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在y軸上. 問(wèn)題3:雙曲線(xiàn)標(biāo)準(zhǔn)方程中a,b,c之間的關(guān)系如何? 答案:雙曲線(xiàn)標(biāo)準(zhǔn)方程中a,b,c的關(guān)系是c2=a2+b2,不同于橢圓方程中c2=a2-b2. 名師點(diǎn)津:(1)在雙曲線(xiàn)的定義中要注意雙曲線(xiàn)上的點(diǎn)(動(dòng)點(diǎn))具備的幾何條件,即“到兩定點(diǎn)(焦點(diǎn))的距離之差的絕對(duì)值為一
3、常數(shù),且該常數(shù)必須小于兩定點(diǎn)的距離”.若定義中的“絕對(duì)值”去掉,點(diǎn)的軌跡是雙曲線(xiàn)的一支.同時(shí)注意定義的轉(zhuǎn)化應(yīng)用. (2)求雙曲線(xiàn)方程時(shí)一是注意標(biāo)準(zhǔn)形式判斷;二是注意a,b,c的關(guān)系易錯(cuò)易混.,,題型一,利用雙曲線(xiàn)的定義求軌跡方程,課堂探究 素養(yǎng)提升,【例1】如圖,圓E:(x+2)2+y2=4,點(diǎn)F(2,0),動(dòng)圓P過(guò)點(diǎn)F, 且與圓E內(nèi)切于點(diǎn)M,求動(dòng)圓P的圓心P的軌跡方程.,方法技巧 利用定義法求雙曲線(xiàn)的標(biāo)準(zhǔn)方程的步驟 (1)找出兩個(gè)定點(diǎn)(即雙曲線(xiàn)的兩個(gè)焦點(diǎn)). (2)根據(jù)條件確定動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離的差(或差的絕對(duì)值)等于常數(shù). (3)確定c和a的值,再由c2=a2+b2求出b2. (4)寫(xiě)出
4、雙曲線(xiàn)(或雙曲線(xiàn)一支)的標(biāo)準(zhǔn)方程.,,即時(shí)訓(xùn)練1:動(dòng)圓C與定圓C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求動(dòng)圓圓心C的軌跡方程.,,【備用例1】 (2017綿陽(yáng)高二期末)已知兩個(gè)定圓O1和O2,它們的半徑分別是2和4,且|O1O2|=8,若動(dòng)圓M與圓O1內(nèi)切,又與O2外切,則動(dòng)圓圓心M的軌跡方程是() (A)圓 (B)橢圓 (C)雙曲線(xiàn)一支(D)拋物線(xiàn) 解析:設(shè)動(dòng)圓圓心為M,半徑為R,由題意|MO1|=R-2,|MO2|=R+4, 所以|MO2|-|MO1|=6(常數(shù))且6<8=|O1O2|, 故M點(diǎn)的軌跡為以O(shè)1,O2為焦點(diǎn)的雙曲線(xiàn)的一支.故選C.,題型二,求雙曲
5、線(xiàn)的標(biāo)準(zhǔn)方程,,,,,方法技巧 (1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程與求橢圓標(biāo)準(zhǔn)方程類(lèi)似,也是“先定型,后定量”,利用待定系數(shù)法求解. (2)當(dāng)焦點(diǎn)位置不確定時(shí),應(yīng)按焦點(diǎn)在x軸上和焦點(diǎn)在y軸上進(jìn)行分類(lèi)討論. (3)當(dāng)已知雙曲線(xiàn)經(jīng)過(guò)兩點(diǎn),求雙曲線(xiàn)的標(biāo)準(zhǔn)方程時(shí),把雙曲線(xiàn)方程設(shè)成mx2+ny2=1(mn<0)的形式求解.,,,,,,題型三,雙曲線(xiàn)定義的應(yīng)用,方法技巧 雙曲線(xiàn)的定義是解決與雙曲線(xiàn)有關(guān)的問(wèn)題的主要依據(jù).在應(yīng)用時(shí),一是注意條件||PF1|-|PF2||=2a(0<2a<|F1F2|)的使用,二是注意與三角形知識(shí)相結(jié)合,經(jīng)常利用正、余弦定理,同時(shí)要注意整體思想的應(yīng)用.,,即時(shí)訓(xùn)練3:若雙曲線(xiàn)x2-4y2
6、=4的左、右焦點(diǎn)分別是F1,F2,過(guò)F2的直線(xiàn)交右支于A,B兩點(diǎn),若|AB|=5,則AF1B的周長(zhǎng)為. 解析:由雙曲線(xiàn)定義可知|AF1|=2a+|AF2|=4+|AF2|, |BF1|=2a+|BF2|=4+|BF2|, 所以|AF1|+|BF1|=8+|AF2|+|BF2|=8+|AB|=13. AF1B的周長(zhǎng)為|AF1|+|BF1|+|AB|=18. 答案:18,,答案:48,題型四,易錯(cuò)辨析雙曲線(xiàn)定義理解不清致誤,,錯(cuò)解:A(或B) 糾錯(cuò):雙曲線(xiàn)定義理解不清,沒(méi)有考慮到點(diǎn)P可能在左右兩支上,僅僅考慮其中一種情況導(dǎo)致丟解. 正解:雙曲線(xiàn)的左右焦點(diǎn)為F1(-5,0),F2(5,0), 則由雙曲線(xiàn)的定義知,||PF1|-|PF2||=2a=8, 而|PF2|=15, 解得|PF1|=7或23. 故選D.,學(xué)霸經(jīng)驗(yàn)分享區(qū),求雙曲線(xiàn)標(biāo)準(zhǔn)方程的方法 (1)如果已知雙曲線(xiàn)的中心在原點(diǎn),且確定了焦點(diǎn)在x軸上或是y軸上,設(shè)出相應(yīng)形式的標(biāo)準(zhǔn)方程,然后根據(jù)條件確定關(guān)于a,b,c的方程組,解出a2,b2,從而寫(xiě)出雙曲線(xiàn)的標(biāo)準(zhǔn)方程(求得的方程可能是一個(gè),也有可能是兩個(gè),注意合理取舍,但不要漏解). (2)當(dāng)焦點(diǎn)位置不確定時(shí),有兩種方法來(lái)解決: 一種是分類(lèi)討論,注意考慮要全面;另一種是如果已知中心在原點(diǎn),但不能確定焦點(diǎn)的具體位置,可以設(shè)雙曲線(xiàn)的一般方程mx2+ny2=1(mn<0).,謝謝觀賞!,