《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列課件.ppt(42頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第1講等差數(shù)列與等比數(shù)列,專題三數(shù)列與不等式,板塊三專題突破核心考點(diǎn),,考情考向分析,1.等差、等比數(shù)列基本量和性質(zhì)的考查是高考熱點(diǎn),經(jīng)常以小題形式出現(xiàn). 2.等差、等比數(shù)列的判定及綜合應(yīng)用也是高考考查的重點(diǎn),注意基本量及定義的使用,考查分析問(wèn)題、解決問(wèn)題的綜合能力,,,熱點(diǎn)分類突破,真題押題精練,內(nèi)容索引,熱點(diǎn)分類突破,1.通項(xiàng)公式 等差數(shù)列:ana1(n1)d; 等比數(shù)列:ana1qn1. 2.求和公式,,熱點(diǎn)一等差數(shù)列、等比數(shù)列的運(yùn)算,3.性質(zhì) 若mnpq, 在等差數(shù)列中amanapaq; 在等比數(shù)列中amanapaq.,例1(1)(2018全國(guó))記Sn為等差數(shù)列an的前n項(xiàng)和,若3S3
2、S2S4,a12,則a5等于 A.12 B.10 C.10 D.12,,解析,答案,解析設(shè)等差數(shù)列an的公差為d,由3S3S2S4,,將a12代入上式,解得d3, 故a5a1(51)d24(3)10.故選B.,解析由題意可得,S4S2q2S2,代入得q29. 等比數(shù)列an的各項(xiàng)均為正數(shù), q3,解得a12,故a5162.,(2)(2018杭州質(zhì)檢)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列an中,若S480,S28,則公比q____,a5_____.,解析,答案,3 162,在進(jìn)行等差(比)數(shù)列項(xiàng)與和的運(yùn)算時(shí),若條件和結(jié)論間的聯(lián)系不明顯,則均可化成關(guān)于a1和d(q)的方程組求解,但要注意消元法及
3、整體計(jì)算,以減少計(jì)算量.,,跟蹤演練1(1)(2018浙江省重點(diǎn)中學(xué)聯(lián)考)設(shè)Sn為等差數(shù)列an的前n項(xiàng)和,若a12 017,S62S318,則S2 019等于 A.2 016 B.2 019 C.2 017 D.2 018,,解析,答案,解析在等差數(shù)列an中,設(shè)公差為d. S62S318, a4a5a6(a1a2a3)9d18. d2,,2 0192 0182 0192 0172 019,故選B.,(2)(2018全國(guó))等比數(shù)列an中,a11,a54a3. 求an的通項(xiàng)公式;,解答,解設(shè)an的公比為q, 由題設(shè)得anqn1. 由已知得q44q2,解得q0(舍去),q2或q2. 故an(
4、2)n1或an2n1(nN*).,記Sn為an的前n項(xiàng)和,若Sm63,求m.,解答,由Sm63得(2)m188,此方程沒有正整數(shù)解. 若an2n1,則Sn2n1. 由Sm63得2m64,解得m6. 綜上,m6.,,熱點(diǎn)二等差數(shù)列、等比數(shù)列的判定與證明,證明數(shù)列an是等差數(shù)列或等比數(shù)列的證明方法 (1)證明數(shù)列an是等差數(shù)列的兩種基本方法 利用定義,證明an1an(nN*)為一常數(shù); 利用等差中項(xiàng),即證明2anan1an1(n2,nN*). (2)證明數(shù)列an是等比數(shù)列的兩種基本方法,證明,(1)求證:數(shù)列anbn為等比數(shù)列;,又a1b13(1)4, 所以anbn是首項(xiàng)為4,公比為2的等比數(shù)列.
5、,解答,解由(1)知,anbn2n1, ,又a1b13(1)2, 所以anbn為常數(shù)數(shù)列,anbn2, 聯(lián)立得,an2n1,,(1)判斷一個(gè)數(shù)列是等差(比)數(shù)列,也可以利用通項(xiàng)公式及前n項(xiàng)和公式,但不能作為證明方法. (2) an1an1(n2)是數(shù)列an為等比數(shù)列的必要不充分條件,判斷時(shí)還要看各項(xiàng)是否為零.,,證明,當(dāng)n2時(shí),有anSnSn1,代入(*)式得 2Sn(SnSn1)(SnSn1)21,,又當(dāng)n1時(shí),由(*)式可得a1S11,,解答,(2)求數(shù)列an的通項(xiàng)公式;,又a1S11滿足上式,,解答,解決等差數(shù)列、等比數(shù)列的綜合問(wèn)題,要從兩個(gè)數(shù)列的特征入手,理清它們的關(guān)系;數(shù)
6、列與不等式、函數(shù)、方程的交匯問(wèn)題,可以結(jié)合數(shù)列的單調(diào)性、最值求解.,,熱點(diǎn)三等差數(shù)列、等比數(shù)列的綜合問(wèn)題,解答,例3已知等差數(shù)列an的公差為1,且a2a7a126. (1)求數(shù)列an的通項(xiàng)公式an與其前n項(xiàng)和Sn;,解由a2a7a126,得a72,a14,,解答,(2)將數(shù)列an的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來(lái)順序恰為等比數(shù)列bn的前3項(xiàng),記bn的前n項(xiàng)和為Tn,若存在mN*,使得對(duì)任意nN*,總有Sn
7、取值范圍為(2,).,(1)等差數(shù)列與等比數(shù)列交匯的問(wèn)題,常用“基本量法”求解,但有時(shí)靈活地運(yùn)用性質(zhì),可使運(yùn)算簡(jiǎn)便. (2)數(shù)列的項(xiàng)或前n項(xiàng)和可以看作關(guān)于n的函數(shù),然后利用函數(shù)的性質(zhì)求解數(shù)列問(wèn)題. (3)數(shù)列中的恒成立問(wèn)題可以通過(guò)分離參數(shù),通過(guò)求數(shù)列的值域求解.,,解答,跟蹤演練3已知數(shù)列an的前n項(xiàng)和為Sn,且Sn13(an1),nN*. (1)求數(shù)列an的通項(xiàng)公式;,解由已知得Sn3an2,令n1,得a11,,解答,解由an1,真題押題精練,真題體驗(yàn),1.(2017全國(guó)改編)記Sn為等差數(shù)列an的前n項(xiàng)和.若a4a524,S648,則an的公差為_____.,解析,答案,4,解析設(shè)an的公
8、差為d,,解得d4.,2.(2017浙江改編)已知等差數(shù)列an的公差為d,前n項(xiàng)和為Sn,則“d0”是“S4S62S5”的________條件.,解析,答案,充要,解析方法一數(shù)列an是公差為d的等差數(shù)列, S44a16d,S55a110d,S66a115d, S4S610a121d,2S510a120d. 若d0,則21d20d,10a121d10a120d, 即S4S62S5. 若S4S62S5,則10a121d10a120d, 即21d20d, d0.“d0”是“S4S62S5”的充要條件. 方法二S4S62S5S4S4a5a62(S4a5)a6a5a5da5d0. “d0”是“S4S62
9、S5”的充要條件.,3.(2017北京)若等差數(shù)列an和等比數(shù)列bn滿足a1b11,a4b48,則 ____.,解析,答案,1,解析設(shè)等差數(shù)列an的公差為d,等比數(shù)列bn的公比為q, 則由a4a13d,,q2.,解析設(shè)an的首項(xiàng)為a1,公比為q,,解析,答案,32,押題預(yù)測(cè),答案,解析,押題依據(jù),押題依據(jù)等差數(shù)列的性質(zhì)和前n項(xiàng)和是數(shù)列最基本的知識(shí)點(diǎn),也是高考的熱點(diǎn),可以考查學(xué)生靈活變換的能力.,1.設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,且a10,a3a100,a6a70的最大自然數(shù)n的值為 A.6 B.7 C.12 D.13,,解析a10,a6a70,a70,a1a132a70,S130的最大自然
10、數(shù)n的值為12.,答案,解析,押題依據(jù),押題依據(jù)等差數(shù)列、等比數(shù)列的綜合問(wèn)題可反映知識(shí)運(yùn)用的綜合性和靈活性,是高考出題的重點(diǎn).,2.在等比數(shù)列an中,a33a22,且5a4為12a3和2a5的等差中項(xiàng),則an的公比等于 A.3 B.2或3 C.2 D.6,,解析設(shè)公比為q,5a4為12a3和2a5的等差中項(xiàng),可得10a412a32a5,10a3q12a32a3q2,得10q122q2,解得q2或3.又a33a22,所以a2q3a22,即a2(q3)2,所以q2.,答案,解析,押題依據(jù),押題依據(jù)本題在數(shù)列、方程、不等式的交匯處命題,綜合考查學(xué)生應(yīng)用數(shù)學(xué)的能力,是高考命題的方向.,,解析由a7a6
11、2a5,得a1q6a1q52a1q4, 整理得q2q20, 解得q2或q1(不合題意,舍去).,押題依據(jù)先定義一個(gè)新數(shù)列,然后要求根據(jù)定義的條件推斷這個(gè)新數(shù)列的一些性質(zhì)或者判斷一個(gè)數(shù)列是否屬于這類數(shù)列的問(wèn)題是近年來(lái)高考中逐漸興起的一類問(wèn)題,這類問(wèn)題一般形式新穎,難度不大,常給人耳目一新的感覺.,4.定義在(,0)(0,)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列an,f(an)仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(,0)(0,)上的如下函數(shù): f(x)x2;f(x)2x;f(x) f(x)ln|x|. 則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為 A. B. C. D.,答案,解析,押題依據(jù),,f(an)f(an2) f(an1)2;,f(an)f(an2)ln|an|ln|an2|(ln|an1|)2f(an1)2.,