10、略 (1)求解與直線方程有關(guān)的最值問題.先設(shè)出直線方程,建立目標函數(shù),再利用基本不等式求解最值. (2)求直線方程.弄清確定直線的兩個條件,由直線方程的幾種特殊形式直接寫出方程. (3)求參數(shù)值或范圍.注意點在直線上,則點的坐標適合直線的方程,再結(jié)合函數(shù)的單調(diào)性或基本不等式求解.,所以ab16,當且僅當a8,b2時等號成立,,跟蹤訓練3過點P(4,1)作直線l分別交x軸,y軸的正半軸于A,B兩點,O為坐標原點. (1)當AOB面積最小時,求直線l的方程;,因為直線l經(jīng)過點P(4,1),,(2)當|OA||OB|取最小值時,求直線l的方程.,當且僅當a6,b3時等號成立,,3,課時作業(yè),PART
11、 THREE,,基礎(chǔ)保分練,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1.(2018浙江省東陽中學期中)下列四條直線中,傾斜角最大的是 A.yx1 B.y2x1 C.yx1 D.x1,解析直線方程yx1的斜率為1,傾斜角為45, 直線方程y2x1的斜率為2,傾斜角為(60<<90), 直線方程yx1的斜率為1,傾斜角為135, 直線方程x1的斜率不存在,傾斜角為90. 所以直線yx1的傾斜角最大.,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,2.過點(2,1)且傾斜角比直線yx1的傾斜角小 的直線方程是 A.x2 B.
12、y1 C.x1 D.y2,斜率不存在,過點(2,1)的直線方程為x2.,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,A.150 B.135 C.120 D.不存在,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,顯然直線l的斜率存在, 設(shè)過點P(2,0)的直線l為yk(x2),,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,故直線l的傾斜角為150.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.(2018舟山調(diào)研)在同一平面直角坐標系中,直線l1
13、:axyb0和直線l2:bxya0有可能是,解析當a0,b0時,a<0,b<0.選項B符合.,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,5.直線MN的斜率為2,其中點N(1,1),點M在直線yx1上,則 A.M(5,7) B.M(4,5) C.M(2,1) D.M(2,3),解析設(shè)M的坐標為(a,b),若點M在直線yx1上, 則有ba1.,,聯(lián)立可得a4,b5, 即M的坐標為(4,5).故選B.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,6.已知兩點M(2,3),N(3,2),直線l過點P(1,1)且與線段MN相交,
14、則直線l的斜率k的取值范圍是,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析如圖所示,,要使直線l與線段MN相交, 當l的傾斜角小于90時,kkPN; 當l的傾斜角大于90時,kkPM,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8.不論實數(shù)m為何值,直線mxy2m10恒過定點 .,解析直線mxy2m10可化為m(x2)(y1)0, mR,,(2,1),直線mxy2m10恒過定點(2,1).,,1,2,3,4,5,6,7,8,9
15、,10,11,12,13,14,15,16,9.已知三角形的三個頂點A(5,0),B(3,3),C(0,2),則BC邊上中線所在的直線方程為 .,x13y50,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.經(jīng)過點A(4,2),且在x軸上的截距等于在y軸上的截距的3倍的直線l的方程的一般式為 .,解析當截距為0時,設(shè)直線方程為ykx,則4k2,,x3y100或x2y0,綜上,直線l的一般式方程為x3y100或x2y0.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,11.如圖,射線OA,
16、OB分別與x軸正半軸成45和30角,過點P(1,0)作直線AB分別交OA,OB于A,B兩點,當AB的中點C恰好落在直線y x上時,求直線AB的方程.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,12.已知直線l:kxy12k0(kR). (1)證明:直線l過定點;,證明直線l的方程可化為yk(x2)1, 故無論k取何值,直線l總過定點(2,1).,,1,2,3,4,5,6,7,8,9,10,11,12
17、,13,14,15,16,(2)若直線l不經(jīng)過第四象限,求k的取值范圍;,解直線l的方程可化為ykx2k1, 則直線l在y軸上的截距為2k1, 要使直線l不經(jīng)過第四象限,,故k的取值范圍是k0.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(3)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設(shè)AOB的面積為S,求S的最小值及此時直線l的方程.,在y軸上的截距為12k,且k0,,故S的最小值為4,此時直線l的方程為x2y40.,技能提升練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.過點A(3,1)且在
18、兩坐標軸上截距相等的直線有 A.1條 B.2條 C.3條 D.4條,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析當所求的直線與兩坐標軸的截距都不為0時, 設(shè)該直線的方程為xya, 把(3,1)代入所設(shè)的方程得a2, 則所求直線的方程為xy2,即xy20; 當所求的直線與兩坐標軸的截距為0時, 設(shè)該直線的方程為ykx,,綜上,所求直線的方程為xy20或x3y0,故選B.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.設(shè)點A(2,3),B(3,2),若直線axy20與線段AB沒有交點,則a的取值范圍是,解析直線axy20恒過點M(0,2),且斜率為a,,,拓展沖刺練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解動直線l0:axbyc30(a0,c0)恒過點P(1,m), abmc30. 又Q(4,0)到動直線l0的最大距離為3,,當且僅當c2a2時取等號.,