《自加速分解溫度SADT的小藥量實驗推算方法》由會員分享,可在線閱讀,更多相關《自加速分解溫度SADT的小藥量實驗推算方法(44頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、自加速分解溫度(SADT)的小藥量實驗推算方法,,簡單回顧,介紹了評價化學物質熱危險性主要參數(shù)(反應開始溫度、反應熱、活化能等)的實驗確定方法。 分析了各主要參數(shù)用以評價化學物質熱危險性的可行性。 討論了實驗儀器、實驗條件對各主要參數(shù)的影響規(guī)律。 比較得出了自加速分解溫度SADT能夠很好地用來評定其熱危險性的結論。,,由于反應性化學物質的自加速分解溫度SADT能夠很好地用來評定其熱危險性,故已成為化學物質熱安全研究的熱點之一 該評價指標得到了聯(lián)合國危險物運輸專家委員會的推崇。同時聯(lián)合國危險物運輸專家委員會還向人們推薦了4種實用的SADT的測定方法 (1)美國式測定方法; (2)絕熱儲存實驗法;
2、 (3)等溫儲存實驗法; (4)蓄熱儲存實驗法。,,聯(lián)合國危險物運輸專家委員會推薦的4種實用的SADT的測定方法的缺點 如何用小藥量,在短時間內(nèi)得到較精確的SADT數(shù)據(jù)受到了人們的廣泛關注 許多安全工程和技術研究者、熱化學專家、學者們試圖利用熱分析儀器(如: ARC、DSC)進行小藥量實驗,根據(jù)測得的自反應性物質的熱分解曲線來推算該物質的自加速分解開始溫度SADT Wilberforce,Whitmore,F(xiàn)isher,Hasegawa,Sun,SADT的理論及實際意義,SADT的實際意義: SADT的數(shù)值是一定包裝材料和尺寸的自反應性化學物質在實際應用過程中的最高許用環(huán)境溫度。 其定義是:實
3、際包裝品中的自反應性化學物質在7日內(nèi)發(fā)生自加速分解的最低環(huán)境溫度 現(xiàn)實中SADT的數(shù)值不僅與自反應性物質的化學及物理特性有關,而且還與包裝尺寸和材料的特性有關。 這里的自加速分解溫度就是指該體系內(nèi)的反應物發(fā)生反應失控時的最低環(huán)境溫度,也就是體系發(fā)生熱自燃、熱爆炸的最低環(huán)境溫度。,SADT的理論及實際意義,SADT的理論意義 一、Semenov模型下的SADT Semenov模型是一個理想化的模型,它主要適用于氣體反應物、具有流動性的液體反應物或是導熱性非常好的固體反應物。該模型的假設是:體系內(nèi)溫度均勻一致,不具有任何溫度梯度,體系與環(huán)境的熱交換全部集中在體系的表面。 如果一個由質量為M的反應物
4、組成的體系,根據(jù)Arrhenius法則,體系的溫度為T時的質量反應速度表達式為:,SADT的理論及實際意義,,,,,,質量反應速率 熱流速 Semenov模型下熱損失 Semenov模型下熱平衡,SADT的理論及實際意義,Frank-Kamenetskii模型下的SADT,Frank-Kamenetskii模型是著眼于實際情況而考慮的一個體系內(nèi)具有溫度分布的模型。 求解該模型下的SADT具有一定困難。一般是視實際體系的空間構造將其簡化,用無限柱坐標、球坐標或無限平板來求解實際問題。這樣我們就可以建立Frank-Kamenetskii模型下的熱平衡方程。 在某一初始環(huán)境溫度下,將該體系內(nèi)的自反應
5、性物質的化學反應動力學參數(shù)、導熱系數(shù)和包裝材料的導熱系數(shù)等代入熱平衡方程后就可求解該體系的空間溫度分布隨時間的變化規(guī)律。 對于不同的初始環(huán)境溫度可求解出一系列環(huán)境溫度下體系內(nèi)部的溫度隨時間分布圖。 體系內(nèi)部溫度發(fā)生失控時所對應的最低環(huán)境溫度即為該體系的SADT。,Frank-Kamenetskii模型下的SADT,柱坐標系中的熱平衡方程:根據(jù)柱坐標系中的Laplace算符的表達式就可以得到在Frank-Kamenetskii模型和柱坐標系下熱平衡方程的表達式,,Frank-Kamenetskii模型下的SADT,球坐標系中的熱平衡方程:同樣,根據(jù)球坐標系中的Laplace算符的表達式就可得到在
6、Frank-Kamenetskii模型和球坐標系下熱平衡方程的表達式,,Frank-Kamenetskii模型下的SADT,在上面兩個熱平衡方程中,當 0時,表明體系將不斷升溫,最終將發(fā)生熱自燃(熱爆炸)。 當 0時,體系的溫度將不斷下降,表明體系將不會發(fā)生熱自燃(熱爆炸)。 當式中的 時,方程可表示為,,,,,Frank-Kamenetskii模型下的SADT,表示系統(tǒng)處于臨界狀態(tài),臨界狀態(tài)時的熱平衡方程也叫Poisson方程。 由Poisson方程得到的關于環(huán)境溫度的解即為Frank-Kamenetskii模型下的SADT。 要得到Poisson 式的解析解非常困難,在工程應用中通
7、常用數(shù)值解方法來求解SADT。,Frank-Kamenetskii模型下的SADT,在處理實際問題時,通常需要將Frank-Kamenetskii模型下熱平衡方程進行簡化,通常用三種典型的幾何形狀來描述熱平衡方程。即,考慮對稱的無限大平板、無限長圓柱和球,在這些特定的場合,三維空間的問題可以化成一維空間的問題來解決。 式中的j稱為幾何因子,當體系為無限大平板時,j =0。當體系為無限長圓柱時,j =1。當體系為球時,j =2。,,Frank-Kamenetskii系統(tǒng)熱自燃的數(shù)值解,實際的特定系統(tǒng),SADT的推算方法(一)C80法,化學動力學和熱力學參數(shù)的求解 化學熱力學參數(shù)
8、的求解 化學反應熱 化學動力學參數(shù)的求解 活化能和指前因子 反應級數(shù)的求解方法,SADT的推算方法(一)C80法反應發(fā)熱量,反應發(fā)熱速率表達式 對上式在全反應溫度范圍內(nèi)積分就可以得到單位重量反應性化學物質的發(fā)熱量,即,,,SADT的推算方法(一)C80法,化學動力學參數(shù)的求解 如何由C80微量量熱儀的實驗結果求解化學反應動力學參數(shù)是我們所關心的問題。在本節(jié)的內(nèi)容中我們將首先介紹求解化學反應動力學(反應級數(shù)、活化能和指前因子)的理論方法。 然后通過實驗實例介紹如何運用C80微量量熱儀的實驗結果來求解化學反應的反應級數(shù)、活化能E和指前因子A,SADT的推算方法(一)C80法反應級數(shù)的求解方法,反應
9、級數(shù)的求解方法 根據(jù)化學反應動力學理論和熱力學理論,對于初始質量為M0的反應物,如果其化學反應級數(shù)為n,單位質量反應物的反應發(fā)熱量為,則該反應性化學物質在其反應開始階段的熱流速可用下式來表示。,,SADT的推算方法(一)C80法反應級數(shù)的求解方法,對于任一相同的化學物質,在相同的溫度范圍內(nèi)其化學反應的活化能和指前因子應該相同,反應的熱值也不變。也就是說,上式中的A 、E和均為定值。 而另一方面,其熱流速 可以通過實驗來測定,那么,我們就可以通過設計合理的實驗程序和條件來求解反應性化學物質的反應級數(shù)。 例如通過設定恒溫實驗,改變反應性化學物質的初始藥量后能得到相同溫度下不同初始藥量的熱流速曲線
10、,,SADT的推算方法(一)C80法反應級數(shù)的求解方法,等溫下不同初始藥量的C80實驗 將兩式相除得,,,,SADT的推算方法(一)C80法反應級數(shù)的求解方法,對上式兩邊取對數(shù)得 由不同藥量的恒溫實驗結果及上式我們就可以求得該反應性化學物質的反應級數(shù)。 這里要指出的是實驗溫度的設定問題,如果試驗溫度設定不準確,也不能成立,則求得的該反應性化學物質的反應級數(shù)肯定有較大的誤差。 所以在設定實驗溫度時,必須將實驗測試溫度設定在被測化學物質開始反應溫度附近,此時,反應物的消耗才能忽略。,,SADT的推算方法(一)C80法反應級數(shù)的求解方法,將由圖所示的實驗結果代入式我們不難得到硝酸銨的反應級數(shù)約等
11、于1,SADT的推算方法(一)C80法活化能和指前因子,由于我們所要求解的SADT為實際包裝品中的自反應性化學物質在7日內(nèi)發(fā)生自加速分解的最低環(huán)境溫度。實驗證明,在該溫度下反應物的消耗率一般很少(一般在2%以下),即可以認為。 根據(jù)化學反應理論和Arrhenius定律,在反應初期,對化學反應速率公式進行推導簡化后可以得到用以描述化學反應放熱速率的關系式,,SADT的推算方法(一)C80法活化能和指前因子,化學反應放熱速率 將上式變形后得 對兩邊取對數(shù)可得,,SADT的推算方法(一)C80法活化能和指前因子,將實測的化學物質在反應初期的熱流速數(shù)據(jù)代入式并作 與 的關系圖可得曲線。再對該曲線進行
12、線性回歸可得一直線。 從該回歸直線的斜率可以求得該反應性化學物質的活化能,再根據(jù)它在縱軸上的截距可以求得該反應性化學物質的指前因子,SADT的推算方法(一)C80法活化能和指前因子,將實測的反應性化學物質在反應初期的熱流速數(shù)據(jù)代入(6-12)式并作與的關系圖可得如圖6-4的曲線。再對該曲線進行線性回歸可得一直線(參見圖6-4)。從該回歸直線的斜率可以求得該反應性化學物質的活化能,再根據(jù)它在縱軸上的截距可以求得該反應性化學物質的指前因子,SADT的推算方法(一)C80法活化能和指前因子,實例,是由C80微量量熱儀測得的過氧化2-氯苯甲酰49%,硅油及其氧化物51%(代號:o-CBP)的熱流速曲線
13、(實驗樣品量:0.500g;升溫速率:0.01C/min),SADT的推算方法(一)C80法活化能和指前因子,從該回歸直線的斜率可以求得該反應性化學物質的活化能,再根據(jù)它在縱軸上的截距可以求得該反應性化學物質的指前因子。 即由 得 E=182kJ/mol, 同理有 得A=2.61026。,,,SADT的推算方法(一)C80法,Semenov模型下SADT的推算方法 通過上面討論,我們可以由C80的等速升溫以及恒溫實驗測得的反應性化學物質的熱流速數(shù)據(jù)求得反應性化學物質的化學動力學參數(shù)(活化能E、指前因子A和反應級數(shù)n)和熱力學參數(shù)(反應發(fā)熱量H)。 有了這些參量后再利用Semenov模型
14、就可以求解反應性化學物質的自加速分解溫度SADT。,Semenov模型下SADT的推算方法,根據(jù)Semenov模型,由反應性化學物質與包裝材料所組成的體系的熱平衡方程可表示為: 根據(jù)前面的討論,在不歸還溫度點有:,,,,Semenov模型下SADT的推算方法,將 代入熱平衡方程 整理得(a)式 式中:B1,B2及為常數(shù),其中,,,,Semenov模型下SADT的推算方法,Semenov模型下SADT的推算方法,對熱平衡方程兩邊對溫度T求導 將 代入得到(b)式 這里的B1,B2同前,,Semenov模型下SADT的推算方法,將(a), (b)兩式相除可得: 根據(jù)第3章的熱圖分析,
15、在Semenov理論模型下滿足dT/dt=0及d(dT/dt)/dT=0時系統(tǒng)所對應的環(huán)境溫度即為該體系的自加速分解溫度SADT。,,,Semenov模型下SADT的推算實例,利用C80微量熱分析儀對部分有機過氧化物、重氮化合物、氧化劑和可燃劑的混合物的反應發(fā)熱特性進行了測定。 根據(jù)6.3.1節(jié)的計算方法和實驗測得的反應物質的熱流速與溫度關系的曲線,我們可以求出它們的化學反應動力學和熱力學參數(shù)。 再根據(jù)6.3.2節(jié)的方法,我們可以求出它們在在Semenov理論模型下的SADT。,Semenov模型下SADT的推算實例,Semenov模型下SADT的推算實例,Semenov模型下SADT的推算實
16、例,根據(jù)熱流速曲線積分求反應熱 根據(jù)不同藥量的等溫實驗求反應級數(shù)n 將實測的化學物質在反應初期的熱流速數(shù)據(jù)作ln((dH/dt)/HM0) 與1/T的關系圖可得曲線。 再對該曲線進行線性回歸可得一直線。,n,Semenov模型下SADT的推算實例,與美國法實測結果的比較,為了驗證該推算方法的可靠性和準確性,將美國方法的實測結果與本研究的推算值進行了比較。 美國方法:25kg標準包裝實驗,與美國法實測結果的比較,與美國法實測結果的比較,上述對比結果表明,由C80微量量熱儀所測的實驗數(shù)據(jù)推算出的SADT值與美國的標準測量法所得的實測結果相比,除o-CBP略有誤差外,其它都非常吻合。 一般可以認為,利用C80微量量熱儀所測的反應性化學物質的熱流速數(shù)據(jù)來推算它們自加速分解溫度SADT的方法是一種較為安全、簡便、實用的反應性化學物質的熱危險性評價方法。,與美國法實測結果的比較,但要指出的是用C80微量量熱儀的實驗結果來推算反應性化學物質的SADT時,為了要得到準確的推算結果,首先必須能夠準確地得到被測化學物質的化學反應動力學參數(shù)和熱力學參數(shù)。 其次要充分了解其化學反應機理 只有準確得到化學物質的化學反應動力學參數(shù)、熱力學參數(shù)和反應機理基礎之上才能推算得到準確的SADT。,