阿爾茲海默病的表觀遺傳學機制及相關藥物研究
《阿爾茲海默病的表觀遺傳學機制及相關藥物研究》由會員分享,可在線閱讀,更多相關《阿爾茲海默病的表觀遺傳學機制及相關藥物研究(10頁珍藏版)》請在裝配圖網上搜索。
1、阿爾茲海默病的表觀遺傳學機制及相關藥物研究 隨著人口的老齡化,認知障礙疾病如阿爾茲海默?。ˋlzheimer’sdisease,AD),已成為危害社會人群健康的重大疾病之一。盡管AD發(fā)病的具體機制仍不十分明確,但P淀粉樣蛋白及Tau蛋白異常修飾等在病理過程中的關鍵作用,已被廣泛公認。由于對AD病理靶點的研究還不夠深入,目前尚缺乏有效治療藥物,因此,尋找更準確有效的治療靶點和相關藥物,成為AD治療研究重中之重。 表觀遺傳學(epigenetics)是與遺傳學(genetic)相對應的概念,是對經典遺傳學的有益補充;其認為在不改變基因序列的條件下,生物體從基因到基因表型之間存在一種
2、調控,這種機制即“表觀遺傳學”的含義。盡管已被提出70余年,但直到近10余年,隨著科學家們對這種“獲得性遺傳”的進一步認識,才成為生命科學界最熱門的研究之一。因此,研究者們轉換思維,從表觀遺傳學角度對AD發(fā)病及治療進行了研究,發(fā)現(xiàn)了一系列表觀修飾的關鍵酶類,以及對這些酶類發(fā)揮影響的藥物,從而為AD藥物研發(fā)提供了新的思路和研究方向。本文擬就AD的表觀遺傳學治療研究綜述如下。 1阿爾茨海默病(AD)概況 阿爾茨海默?。ˋD)是一種以進行性認知障礙和記憶力損害為主的中樞神經系統(tǒng)退行性疾病。它是最常見的癡呆類型,西方國家[中50%?70%的癡呆屬于AD。其病因及發(fā)病機制復雜,涵蓋了
3、遺傳和環(huán)境的危險因素,涉及成千上萬個基因表達的改變,以及多種信號途徑的上調,如P淀粉樣肽W-amyloidpeptide,Ap)的沉積、Tau蛋白過度磷酸化、炎癥、氧化應激、能量代謝、血管因素及細胞凋亡周期異常等。ad的典型病理改變包括突觸喪失、某些神經遞質水平下降、神經元內異常物質沉積以及選擇性腦神經細胞死亡,使大腦受累區(qū)域廣泛萎縮,導致記憶力喪失伴行為改變和人格異常,嚴重者可影響工作及社會生活。受累區(qū)域常會出現(xiàn)A沉積、老年斑(senileplaques,SP)、神經原纖維纏結(neurofibrillarytangles,NFT)及Tau蛋白過度磷酸化等。疾病逐漸進展惡化,甚至累及生命。遺
4、憾的是目前尚缺乏延緩或阻礙疾病進展的治療手段。 在AD中,涉及神經元退行性改變的基因達200余個,越來越多的研究數(shù)據發(fā)現(xiàn)在沒有基因序列改變的情況下,某些機制也可以決定致病基因何時或怎樣表達,最終導致AD發(fā)病。因此,AD基因組并不能完全解釋發(fā)病機制[14]。已知編碼APP、PSEN1和PSEN2的基因僅可導致家族性早發(fā)型AD(early-onsetAD,EOAD);而大多數(shù)(約95%)AD均為晚發(fā)型AD(late-onsetAD,LOAD)或散發(fā)型。因此可以推斷,表觀遺傳現(xiàn)象或環(huán)境因素參與了LOAD的致病。這就部分解釋了為什么同一家族中有的家庭成員發(fā)病而另一些不發(fā)病;而且,在年輕的同卵
5、雙胞胎中基因組無實質上的差異,而在同一老年雙胞胎中其基因表觀遺傳學上存在顯著差異。 大量研究數(shù)據證實,基因-環(huán)境相互作用在AD的病理生理過程中發(fā)揮了關鍵作用營養(yǎng)物質、毒素、環(huán)境暴露及人的生活行為,都可以在不改變基因組序列的條件下使基因激活或沉默。目前已知的可調控基因轉錄和表達的表觀遺傳學機制主要分兩大類:①基因選擇性轉錄的調控:包括基因組DNA甲基化,多種組蛋白甲基化及乙酰化等修飾;②基因轉錄后的調控:包括微小RNA(microRNA,miRNA)和小干擾RNA(smallinterferingRNA,siRNA)等非編碼RNA的調節(jié),以及沉默的核糖體RNA(ribosomalRNA
6、,rRNA)基因。除此之外,染色體重塑、基因印記、X染色體失活也屬于表觀遺傳學范疇。 2表觀遺傳學 表觀遺傳學的涵義即在DNA序列不發(fā)生改變的情況下,基因的表達與功能發(fā)生改變,并產生可遺傳的表型。基本機制即:通過多種基因修飾,影響基因轉錄和(或)表達,從而參與調控機體的生長、發(fā)育、衰老及病理過程。至此,表觀遺傳學的發(fā)現(xiàn)極大豐富了傳統(tǒng)遺傳學的內容,使人們認識到遺傳信息可以有兩種形式:即DNA序列編碼的“遺傳密碼”和表觀遺傳學信息。它和DNA序列改變不同的是,許多表觀遺傳的基因轉錄和表達是可逆的,這就為許多疾病的治療開創(chuàng)了樂觀的前景。 2.1組蛋白修飾 組蛋
7、白在DNA組裝中發(fā)揮了關鍵作用,利用核心組蛋白的共價修飾傳遞表觀遺傳學信息。這些修飾主要包括組蛋白甲基化、乙?;?、磷酸化、泛素化、ADP-核糖基化及特定氨基酸殘基N-末端的SUMO化;其中組蛋白氨基末端上的賴氨酸、精氨酸殘基是修飾的主要靶點,這些組蛋白翻譯后修飾(post-translationalmodifications,PTMs)對基因特異性表達的調控,是其表觀遺傳學的重要標志。正常機體內,組蛋白修飾保持著可逆的動態(tài)平衡。一般而言,組蛋白乙酰化是在組蛋白乙酰轉移酶(histoneacetyl-transferase,HATs)的催化下,從乙酰輔酶A上轉移乙?;浇M蛋白N-末端的賴氨酸殘基
8、上;由于乙酰化中和了組蛋白的正電荷,使組蛋白末端和相關DNA帶負電荷磷酸基團之間的作用減弱,降低了組蛋白和DNA之間的親和力,這種染色質構象的放寬有助于轉錄因子向靶基因片段聚集并利于轉錄的進行。而去乙?;瘎t是組蛋白去乙?;福╤istonedeacetylases,HDACs)將乙酰基從乙?;M蛋白轉移到乙酰輔酶A上,形成了致密的染色質狀態(tài),從而使基因轉錄下降或沉默。 2.2DNA甲基化 DNA甲基化較組蛋白修飾更進一步,是表觀遺傳學的又一重要機制。DNA甲基化主要是在DNA甲基轉移酶(DNAmethyltransferase,DNMTs,包括DNMT1、2、3a/b和4)
9、催化下,將同型半胱氨酸(homocysteine,Hcy)-甲硫氨酸循環(huán)中S-腺苷甲硫氨酸(SAM)中的甲基,由四氫葉酸轉移到胞嘧啶的第5位上形成5-甲基胞嘧啶(5-methylcytosine,5-mC)。其中,相鄰的胞嘧啶-鳥嘌呤二核苷酸(CpGs)是最主要的甲基化位點。在人類基因組中,CpG以兩種形式存在:一種分散存在于DNA中,其CpG70%?90%的位點是甲基化的;另一種CpG呈密集分布于一定區(qū)域,稱之為“CpG島”(CpGislands),通常位于或接近基因啟動子區(qū)(promoterregions),在正常人體基因組中處于非甲基化狀態(tài)。CpG島中的胞嘧啶甲基化可以阻礙轉錄因子的結合
10、,從而可致基因沉默。一般而言,高度甲基化的基因可致表達抑制,而低甲基化的基因可增強基因表達或過表達。 2.3非編碼RNA 表觀遺傳學調控機制涉及RNA的主要包括:miRNA、siRNA以及維持細胞周期的沉默rRNA基因的一部分。 miRNA是較短的雙鏈RNA分子,約有22個核苷酸,來源于機體自身基因即細胞核及細胞質中較大的RNA前體,有自己的啟動子和調控元件。人類基因組中有約700?800個miRNA。這些小分子RNA在轉錄后通過綁定靶mRNA,從而抑制轉錄或誘導mRNA分裂降解。大多數(shù)miRNA具有高度保守性和組織特異性,可以調控機體中30%?50%的蛋白質編碼
11、基因。siRNA長短與miRNA相似,作用方式也有很多相同之處,區(qū)別在于siRNA可以體外合成,多由外源性導入或感染誘導產生。 重復rRNA基因的復制為真核生物核糖體提供了初始活性位點,在基因表達中是蛋白質合成的熱點區(qū)。不同細胞類型可表現(xiàn)不同的活性rRNA比率,提示隨著細胞發(fā)育分化,rRNA基因拷貝數(shù)比例會發(fā)生改變。沉默rRNA的表觀遺傳學方式在這個過程中發(fā)揮了重要作用,使活性和非活性rRNAs保持了動態(tài)平衡。 2.4染色質重塑、基因印記和X染色體失活 染色質重塑(chromatinremodeling)指基因復制、轉錄和重組等過程中,核小體位置和結構及其中的組蛋
12、白發(fā)生變化,引起染色質改變的過程;主要機制即致密的染色質發(fā)生解壓縮,暴露基因轉錄啟動子區(qū)中的特定結合位點,使轉錄因子(transcriptionfactor,TF)更易與之結合?;蛴∮?geneticimprinting)指來自親本的等位基因在發(fā)育過程中產生特異性的加工修飾,導致子代體細胞中兩個親本來源的等位基因有不同的表達方式,即一個等位基因有表達活性,另一等位基因沉默。X染色體失活指雌性哺乳動物細胞中兩條X染色體的其中之一失去活性的現(xiàn)象,即X染色體被包裝成異染色質,進而因功能受抑制而沉默化,使雌性不會因為擁有兩個X染色體而產生兩倍的基因產物。 3AD的表觀遺傳學3.1組蛋白修飾
13、 研究顯示,在AD中存在組蛋白的PTMs。組蛋白3(histone3,H3)磷酸化作為激活有絲分裂的關鍵步驟,可使AD海馬神經元呈過磷酸化狀態(tài)。對APP/PS1突變小鼠和野生型小鼠進行條件恐懼訓練,結果顯示前者乙酰化H4較野生小鼠組降低50%;之后對突變組進行HDAC抑制劑(histonedeacetylasesinhibitors,HDACIs)曲古抑菌素A的治療,顯示前者乙酰化H4水平出現(xiàn)了上升。在一項皮層神經元培養(yǎng)模型研究中,APP過度表達則可導致H3和H4乙?;档停约癱-AMP反應元件結合蛋白(cAMP-responseelementbindingprotein,CREB
14、)水平下降;而CREB則是腦神經元中激活記憶相關基因,形成長期記憶的關鍵蛋白。總之,盡管在AD患者、AD動物模型及AD培養(yǎng)模型中,都出現(xiàn)了組蛋白修飾,但這個過程是極其復雜的,特異性位點會因功能狀態(tài)不同而出現(xiàn)組蛋白乙?;黾踊驕p少。 3.2DNA甲基化 3.2.1相關基因的甲基化研究顯示,盡管很難判 斷AD中甲基化程度是升高還是下降,但12個甲基化的AD特異性基因表現(xiàn)出了顯著的“表觀偏移”;同時研究還發(fā)現(xiàn),在DNMT1啟動子內一些CpG位點也表現(xiàn)出年齡相關的表觀偏移。研究還發(fā)現(xiàn),葉酸、甲硫氨酸及Hcy代謝與DNA甲基化機制顯著關聯(lián)。例如,人類及動物模型葉酸缺乏將導致
15、基因組整體低甲基化,而補充葉酸則可部分逆轉甲基化程度。Smith等研究發(fā)現(xiàn),衰老及AD人群中都出現(xiàn)了葉酸缺乏和甲硫氨酸-Hcy周期的改變。另一研究發(fā)現(xiàn)AD患者腦脊液(cerebro-spinalfluid,CSF)中葉酸顯著下降,同樣下降的還有CSF及腦組織中SAM。同時還觀察到AD患者腦組織中S-腺苷同型半胱氨酸(SAH)及血漿中Hcy的升高,后者可抑制DNA甲基化。 目前已知的AD相關基因主要包括:p淀粉樣蛋白前體(APP)基因、早老素1(PS1)和早老素2(PS2)基因、載脂蛋白E(ApoE)基因、p-分泌酶(BACE)基因、sortilin相關受體基因(sortilin-re
16、latedreceptor1gene,SORL1)以及白介素1a(IL-1a)和白介素6(IL-6)基因等。其中,APP基因、BACE基因或PS1基因均存在可調控的CpG甲基化位點。有研究顯示,一例AD尸檢的大腦皮層中APP基因發(fā)生了完全去甲基化,而正常樣本或匹克氏病(Pick’sdisease)患者樣本則沒有這種變化。實驗發(fā)現(xiàn),葉酸缺乏所致的BACE和PS1基因表達增強,可通過補充SAM而恢復正常。同樣,體內實驗發(fā)現(xiàn),給予APP過度表達的轉基因小鼠缺乏葉酸、B12及B6的飲食,可以使SAH升高并上調PS1和BACE的表達,以及促進A的沉積和出現(xiàn)認知障礙。在LOAD尸檢標本中,研究者發(fā)現(xiàn)了著名
17、的“年齡依賴的表觀遺傳學漂移”(age-dependentepigeneticdrift);對CpG島異常的表觀遺傳學控制,可能促成了LOAD的病理變化,因此,“表觀遺傳學漂移”可能是LOAD個體易感的重要機制。 3.2.2Tau蛋白相關的甲基化Tau蛋白是一種微管結合蛋白(microtubulebindingprotein,MAP),它能與神經軸突內的微管結合,具有誘導與促進微管形成,防止微管解聚、維持微管功能穩(wěn)定的功能。對記憶和正常大腦功能起重要作用。然而,在AD中,Tau蛋白不僅不再發(fā)揮正常功能,還會因異常磷酸化或糖基化等改變了Tau蛋白的構象,使神經元微管結構廣泛破壞,形成以
18、Tau蛋白為核心的NFT,最終導致神經元功能受損或神經元丟失。 人體在正常條件下,Tau蛋白啟動子的AP2結合位點是非甲基化的,但SP1和GCF結合位點則被甲基化。而隨著年齡的增加,SP1作為一種轉錄激活位點甲基化程度升高,GCF作為啟動子抑制位點則逐漸去甲基化,因此總體而言Tau蛋白的基因表達是下調的。尤其在額葉及海馬區(qū)域,正常Tau蛋白也出現(xiàn)了年齡相關的下降。蛋白磷酸酶2A(PP2A)是一種針對磷酸化Tau蛋白的去磷酸化酶,PP2A催化亞基的甲基化可以激活該酶。研究顯示,在APP及PS1基因突變的轉基因小鼠中,PP2A的甲基化程度顯著下降,結果顯示Tau蛋白磷酸化增高。對培養(yǎng)的神
19、經元添加葉酸拮抗劑甲氨蝶呤,也可導致PP2A去甲基化,從而增加Tau蛋白的磷酸化程度。另外,還有研究顯示,Hcy可以使PP2A的甲基化程度及活性下降,而添加葉酸和B12則可以逆轉這個過程。總之,Tau蛋白的磷酸化和脫磷酸化間平衡是維持微管穩(wěn)定性的關鍵因素;而其中磷酸化相關酶類的甲基化程度,成為影響Tau蛋白磷酸化的重要因素。 3.2.3異常的細胞周期和神經元凋亡研究證實,細胞周期異常和神經元凋亡是AD神經退行性變的常見機制。AD神經元中細胞周期及凋亡途徑關鍵因子受DNA甲基化影響并發(fā)生上調。包括細胞周期素B2基因、caspase-1基因、caspase-3基因等。這些相關基因的低甲基
20、化使細胞進入異常細胞周期。同樣,高Hcy可使培養(yǎng)神經元凋亡,也間接證實了低甲基化導致異常細胞周期;而使用SAM還可起到拮抗細胞凋亡的效果。 3.3A與miRNA 研究發(fā)現(xiàn),miRNA可以調節(jié)APP的表達、APP處理、A聚積以及BACE1的表達,從而導致A毒性改變或影響神經再生。因而,miRNA失調可使APP表達及處理過程發(fā)生改變,最終引起神經元存活率和神經再生程度的改變。針對全球AD人群和正常老年人群的對比研究發(fā)現(xiàn),特異性miRNA水平存在顯著差異。研究顯示,在AD中APP相關miRNA顯著下降,而APPmRNA水平則保持平穩(wěn),提示miRNA影響APP表達是通過抑制轉錄而不
21、是促進APPmRNA的裂解;同時,在AD皮層中miRNA-106b出現(xiàn)顯著下降。具體機制還有待進一步研究。 3.4AD與一碳代謝 葉酸代謝又稱為一碳代謝,需要SAM提供甲基。諸多研究表明,AD患者常存在血漿及CSF中Hcy升高(兩者濃度升高常呈正相關),血漿葉酸和B12水平下降,以及腦組織中SAM減少。早期暴露于缺乏葉酸及B族維生素飲食的動物,其AD相關基因在腦組織中發(fā)生了表觀遺傳學修飾。SAM作為甲基化過程最重要的甲基來源,其產生及循環(huán)依賴于甲硫氨酸循環(huán)的正常進行[11]。研究顯示,AD患者CSF中SAM出現(xiàn)顯著下降,口服SAM(1200mg,qd)4?8個月,可以使CS
22、F中SAM濃度升高。同時,維生素B12缺乏可使SAM產生減少,從而影響甲基化。前瞻性隊列研究表明,高Hcy與AD高風險顯著相關,而較高的葉酸攝入量可以降低老年人的AD風險。葉酸缺乏導致的SAM缺乏以及Hcy升高,使甲基化水平下降;并且,Hcy影響SAM和SAH水平,后兩者可調節(jié)DNA甲基化活性以及蛋白翻譯后修飾。另外,研究還發(fā)現(xiàn)Hcy可通過抑制甲基化,降低PP2A甲基化程度,從而導致Tau蛋白過磷酸化、NFT及SP形成。因此,最關鍵機制即:葉酸/同型半胱氨酸代謝異常導致AD相關基因啟動子的表觀遺傳修飾(CpG區(qū)域甲基化狀態(tài)的改變),使基因沉默(高甲基化)或過度表達(低甲基化),最終發(fā)生AD。
23、 4表觀遺傳學在AD診療中的應用研究 近年來,隨著表觀遺傳學在AD研究中的不斷進步,研究者已逐漸將其應用于AD的診斷及治療中,盡管多數(shù)還處于臨床前試驗階段,但表觀遺傳學應用于AD臨床的前景是樂觀并值得期待的。 4.1表觀遺傳學診斷手段 利用亞硫酸氫鈉進行甲基化測序是檢測DNA甲基化的金標準。該方法利用鹽析法從血液中提取基因組DNA,經過亞硫酸氫鹽處理后,變性DNA中胞嘧啶轉換為尿嘧啶,而5-mC則不發(fā)生轉換,因此在經過PCR擴增和DNA測序后,胸腺嘧啶則代表非甲基化胞嘧啶,而5-mC(主要為CpG二核苷酸)仍為胞嘧啶。繼而由該方法延伸出多個DNA甲基化分析
24、法,例如:甲基化特異性PCR(methylationspecificPCR,MSP)、結合亞硫酸氫鹽限制性分析(combinedbisulfiterestrictionanalysis,COBRA)以及甲基敏感性單核苷酸引物(methylation-sensitivesinglenucleotideprimerextension,MS-SNuPE)等。然而,由于目前對AD相關基因甲基化的研究還不完善,只能在臨床前研究中應用甲基化測序,用于對比分析AD中基因甲基化的真實狀態(tài)。 實時基因成像(real-timegeneticimaging)技術是另一種判斷基因表觀遺傳修飾的手段;該技術避
25、免了尸檢或動物研究,是一種新型的非侵入性的可視化基因調控檢測。磁共振波譜(MRspectroscopy,MRS)即是這樣一種特殊的磁共振成像,該技術可掃描到特定的蛋白,將來可使我們能夠實現(xiàn)對基因表達變化的可視化實時檢測,理論上而言可以追蹤到DNA甲基化或組蛋白修飾的責任蛋白;因此,在一定程度上,將為AD的表觀遺傳學診斷和治療提供新的手段[39]。 此外,另有研究發(fā)現(xiàn),脂肪酸酰胺水解酶(fattyacidamidehydrolase,FAAH)參與了AD的發(fā)病,同時還發(fā)現(xiàn)FAAH易于從外周血中檢出,并可作為一個新的潛在的AD生物標志物(biomarker),繼而用于AD的預測或診斷。然
26、而,由于一些AD相關蛋白或酶類在外周血中易降解,穩(wěn)定的miRNA檢測已成為反映疾病的重要手段。由于大多數(shù)AD患者外周血單核細胞中存在各種miRNA的表達上調(如miR-371、miR-517等),且與其在AD腦中高表達相對應,提示通過測定血漿及血單核細胞的miRNA譜變化,可作為AD診斷和病情評估的重要方法。 4.2AD的表觀遺傳學治療 表觀遺傳學對研究AD的發(fā)病機制和病程轉歸,以及研發(fā)新的藥物等方面開拓了廣闊的空間。表觀遺傳學藥物進入體內后,可充當基因轉錄或表達的“開關”,通過不同的基因修飾及調控基因表觀修飾相關酶類的活性,繼而達到在未改變DNA序列的情況下影響基因表型。
27、因此,正是表觀遺傳學改變的“可逆性”,使與之相關藥物的研發(fā)成為AD治療研究的新方向和重點。 4.2.1HDACIs近年來,科學家們研發(fā)了多種新的HDACIs。根據化學形態(tài)主要分為4類:①短鏈脂肪酸類:如丁酸鈉、苯丁酸鹽和丙戊酸(valproicacid,VPA);②異輕肟酸(hydroxamicacid)類:如曲古抑菌素A(trichostatinA,TSA)、辛二酰苯胺異輕肟酸(suberoylanilidehydroxamicacid,SAHA);③環(huán)氧酮類:如trapoxinA和trapoxinB;④苯甲酰胺類:如MS-275。這些HDACIs與鋅依賴性HDAC蛋白(zinc-
28、dependentHDACprotein,I、II及IV類組蛋白亞型)相互作用;煙酰胺作為NAD+前體,可以抑制III類HDAC蛋白。其中,研究最廣泛的是丁酸鈉、苯丁酸鹽、VPA、TSA和SAHA。 目前FDA批準上市的是SAHA,-種治療T細胞淋巴瘤的新型化合物,不僅可增加組蛋白乙?;剑瑫r還可提高認知。在神經系統(tǒng)中,VPA具有抗驚厥和穩(wěn)定情緒的作用,因此這些作用可能與引起組蛋白乙?;淖冇嘘P;VPA還可以通過抑制GSK-3#介導的y-分泌酶裂解APP,從而抑制Ap的產生,減少A斑塊,最終緩解AD模型鼠的認知功能障礙。Ricobaraza等研究顯示,4-苯基丁酸乙酯(PBA)可
29、通過降低GSD-3#來降低AD大鼠腦內Tau蛋白磷酸化,并可清除突觸間A沉積,減輕內質網壓力,從而恢復記憶并逆轉學習障礙。而煙酰胺則可選擇性降低Tau蛋白磷酸化并增加乙?;腶微管蛋白。Fischer等也研究發(fā)現(xiàn),非特異性HDACIs如VPA、TSA、4-苯基丁酸鈉及伏立諾他等,都可以通過不同的表觀遺傳機制影響Ap沉積和Tau蛋白過磷酸化,并可改善學習和記憶力。另外,HDACi丙戊酸可以降低APP的表達,減輕大腦中的A肽斑塊負擔;研究還證實,HDACI治療還可誘導樹突發(fā)芽,增加突觸數(shù)量,以及恢復學習行為和形成長期記憶。Zhang等報道,口服HDACIMS-275可改善神經炎癥和腦淀粉樣變,以及
30、改善AD模型動物的行為能力。這些研究提示,HDACIs可通過調節(jié)HDAC蛋白活性和Tau蛋白磷酸化水平,從而用于AD的治療. HDACIs可選擇性抑制HDACs,導致組蛋白乙?;缴?,恢復AD模型動物中組蛋白乙?;郊疤岣邔W習和記憶能力。例如:Guan等發(fā)現(xiàn)當腦內HDAC2過表達時,小鼠海馬神經元樹突棘密度降低、突觸形成減少、CA1區(qū)LTP形成障礙、空間記憶和工作記憶損傷;而使用HDACIs則能夠促進小鼠神經元樹突棘和突觸的形成,改善AD模型小鼠的學習和記憶減退狀態(tài)。因此,HDAC2可能是HDACIs最適宜的治療靶點之一,可能使腦神經元內合成新的蛋白以改善或恢復AD患者記憶。除
31、此之外,HDACIs對基因表達的調節(jié)具有特異效應,可以在上調靶基因表達的同時下調其他基因;這種基因特異性常通過轉錄因子來調控,后者可以識別特定啟動子和增強子序列,并賦予靶基因特異性(gene-specificeffects),使之對HDACIs具有敏感性[44],繼而逆轉表觀遺傳改變。同時,應用HDACIs治療AD還應當考慮其是否可穿透血腦屏障,因此,最近的一項研究研發(fā)了一種可進入CNS(“CNS-penetrant”)的HDACIs(I類)EVP-0334,目前已進入I期臨床試驗用于AD治療。 眾所周知,AD大腦受累的主要區(qū)域為內側嗅皮質、海馬及杏仁核等。研究發(fā)現(xiàn),與正常腦組織相比
32、,AD患者皮質中HDAC6蛋白水平升高了52%,而海馬中則升高了92%。HDAC6與Tau蛋白共同存在于核周,并發(fā)生相互作用;其中HDAC6具有獨立的微管蛋白脫乙酰基酶的活性。使用HDAC6抑制劑Tubacin治療或敲除HDAC6,并不能影響HDAC6與Tau蛋白的相互作用,但可以減少Tau蛋白磷酸化[55]。通過結合HDAC6,Tau蛋白可抑制脫乙酰酶活性,從而導致微管蛋白乙?;黾樱辉赥au蛋白過表達的細胞中也可見這種增加;說明過量的Tau蛋白成為HDAC6的抑制劑,然而AD患者中正常Tau蛋白是減少的。文獻顯示,HDAC6的減少或丟失可改善聯(lián)想和空間記憶形成[56,57],以及阻斷A誘導
33、的海馬神經元線粒體運輸障礙。最近有研究人員還發(fā)現(xiàn),HDAC6無效突變(nullmutation)可以挽救神經元中Tau蛋白誘導的微管缺陷。他們采用遺傳和藥理學方法抑制HDAC6的tubulin特異性脫乙?;富钚?,證實這種“挽救效應”有可能是通過增進微管乙?;閷У?。這些研究結果表明,HDAC6有可能是AD和相關Tau病的一種獨特的有潛力的藥物靶點,HDAC6抑制劑有望成為AD治療的新型藥物。 目前研究證實,HDACIs可用來治療神經變性病、抑郁、焦慮情緒、認知功能障礙及神經發(fā)育障礙,因此為AD的治療提供廣闊的前景。但現(xiàn)有的HDACIs存在生物利用度低、代謝快、低選擇性等缺點。因此
34、,研究開發(fā)結構新穎、副作用小、特異性及選擇性高的HDACI具有重要的臨床意義。 4.2.2飲食因素除此之外,飲食因素,例如葉酸、維生素B2、B6、B12、蛋氨酸、膽堿等都可以影響甲基供體SAM的形成,并影響DNMTs活性;同時,一些天然化合物,如異黃酮、黃酮、兒茶素、姜黃素、白藜蘆醇等,可以改變表觀遺傳學機制,影響染色質修飾酶的活性,因此備受關注。 研究證實,傳統(tǒng)用于抗腫瘤、抗氧化、抗炎、抗細胞凋亡及預防高脂血癥的姜黃素,也可用于治療AD:在體外實驗中,姜黃素可抑制A聚集沉積、A#誘導的炎癥、戶分泌酶及乙酰膽堿酯酶的活性;而體內實驗則證實,口服姜黃素可抑制AD動物腦組織中A
35、p沉積、Ap寡聚化及Tau蛋白磷酸化,并改善行為及認知。另有研究發(fā)現(xiàn),姜黃素還可加速淀粉樣斑塊的分解,繼而改善AD的空間記憶障礙。據Bora-Tatar等[65]報道,在33種羧酸衍生物中,姜黃素是最有效的HDAC抑制劑,甚至比丙戊酸和丁酸鈉更強效;另有研究也發(fā)現(xiàn),姜黃素可顯著降低HDAC1、3和8蛋白水平,并可提高乙?;疕4水平。同時,姜黃素還是潛在的HAT抑制劑,2004年Balasubramanyam等[66]發(fā)現(xiàn),姜黃素是p300/CREB結合蛋白HAT活性特異性抑制劑,對維持一定的CREB水平起到關鍵作用。因此,姜黃素對HDAC和HAT均有調節(jié)作用;作為已知的抗氧化劑,姜黃素可能是通
36、過調節(jié)氧化應激,從而對乙酰化和去乙?;哂须p重調節(jié)作用。 AD表觀遺傳學改變受環(huán)境、營養(yǎng)因素等諸多因素共同作用,因此自孕前保健開始,直至子代的一生,都保持機體內外生存環(huán)境的良好,保證表觀遺傳學正常修飾及表達,在一定程度上可能會預防AD的發(fā)生。同時,由于目前糖尿病、肥胖、心血管疾病、高血壓等都是公認的AD高危因素,通過表觀遺傳學機制防治這些疾病,也是降低AD的發(fā)生風險的重要手段。另外,提倡低熱量、低膽固醇和富含葉酸、B族維生素及姜黃素等的飲食,以及降低血漿Hcy值,可能對保護大腦神經元,改善老年期認知,以及預防AD發(fā)生或逆轉AD的表觀遺傳改變,起到一定的積極作用。 4.2.3
37、其他因素由于DNA甲基化是可逆的,該過程的相關酶類也可作為AD治療的研究靶點,例如DNMT抑制劑。然而,目前對DNMT抑制劑的研究多局限于腫瘤的治療,因此對于AD的治療作用還有待進一步研究。另外,研究發(fā)現(xiàn)AD中與APP裂解機制相關的多個miRNA也發(fā)生了改變,因此針對miRNA的AD表觀遺傳治療成為重要研究方向。2006年,中國科學院上海生命科學研究院生物化學與細胞生物學研究所裴鋼院士研究組研究發(fā)現(xiàn),腎上腺素受體被激活后,可以增強y-分泌酶的活性,進而能夠增加AD中Ap的產生。這項發(fā)現(xiàn)揭示了AD致病的新機制,提示腎上腺素受體有可能成為研發(fā)AD治療藥物的新靶點。 5展望 綜上
38、所述,在AD中,表觀遺傳學機制對疾病發(fā)生發(fā)展起到了關鍵作用,尤其是散發(fā)性AD。表觀遺[8]傳學調節(jié)障礙導致相關基因轉錄異常,引起關鍵蛋白或酶類異常,繼而發(fā)生一系列病理生理改變,是AD發(fā)病的主要原因。表觀遺傳學改變可以通過表觀遺傳藥物進行逆轉,因而這不僅為AD的治療開創(chuàng)了一片新天地,更引導醫(yī)藥行業(yè)進入了一個嶄新的領域。 然而,使用表觀遺傳學藥物治療疾病也面臨著一系列難題。對于目前可用的表觀遺傳學化合物如HDACIs及辣椒素等而言,主要的困難即缺乏針對不同腦區(qū)、不同神經元亞型或特異基因的“選擇性”。 這種選擇性的缺乏成為表觀遺傳治療機制中的關鍵問題。除此之外,由于組蛋白修飾與DNA甲基化可共同調節(jié)轉錄,改變任一機制即會影響到其他復雜機制,這成為表觀遺傳治療的又一難題。表觀遺傳治療的這些難題都可能在治療中產生一系列副作用, 有些甚至可能是有害的,因此限制了其應用。根據目前AD表觀遺傳學的研究現(xiàn)狀,有待更深入而準確地發(fā)現(xiàn)基因修飾靶點及其作用機制,在避免環(huán)境及飲食等不良因素的條件下,尋求更特異的靶位來開發(fā)更準確的表觀遺傳學藥物已成為當務之急。
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工重大危險源安全管理制度
- 安全培訓資料:典型建筑火災的防治基本原則與救援技術
- 企業(yè)雙重預防體系應知應會知識問答
- 8 各種煤礦安全考試試題
- 9 危險化學品經營單位安全生產管理人員模擬考試題庫試卷附答案
- 加壓過濾機司機技術操作規(guī)程
- 樹脂砂混砂工藝知識總結
- XXXXX現(xiàn)場安全應急處置預案
- 某公司消防安全檢查制度總結
- 1 煤礦安全檢查工(中級)職業(yè)技能理論知識考核試題含答案
- 4.燃氣安全生產企業(yè)主要負責人模擬考試題庫試卷含答案
- 工段(班組)級安全檢查表
- D 氯化工藝作業(yè)模擬考試題庫試卷含答案-4
- 建筑起重司索信號工安全操作要點
- 實驗室計量常見的30個問問答題含解析