沖壓模-合金基座片零件多工位級(jí)進(jìn)模設(shè)計(jì)(帶CAD圖紙)
沖壓模-合金基座片零件多工位級(jí)進(jìn)模設(shè)計(jì)(帶CAD圖紙),沖壓,合金,基座,零件,多工位級(jí)進(jìn)模,設(shè)計(jì),cad,圖紙
General all-steel punching die’s punching accuracy
Accuracy of panel punching part is display the press accuracy of the die exactly. But the accuracy of any punching parts’ linear dimension and positional accuracy almost depend on the blanking and blanking accuracy,. So that the compound mould of compound punching’s accuracy, is typicalness and representation in the majority.
Analyse of the die’s accuracy
For the analyse of pracyicable inaccuracy during production of dies to inactivation, we could get the tendency when it is augmentation in most time. From this we could analyse the elements. When the new punch dies pt into production to the first cutter grinding, the inaccuracy produced called initial error; if the die grinding more than twenty times, until it’s discard, the inaccuracy called conventional error; and before the dies discard, the largest error of the last batch permit, called limiting error. at job site, the evidence to confirm life of sharpening is the higher of the blanking, punched hole or punched parts. Because all finished parts had been blanked ,so it is especially for the compound dies. Therefore, the analyse of burr and measurement is especially important when do them as enterprise standardization or checked with .
The initial error usually is the minimal through the whole life of die. Its magnitude depend on the accuracy of manufacture, quality, measure of the punching part, thickness of panel, magnitude of gap and degree of homogeneity. The accuracy of manufacture depend on the manufacture process. For the 1 mm thicked compound punching part made in medium steel, the experimental result and productive practice all prove that the burr of dies which produced by spark cutting are higher 25%~~30% than produced by grinder ,NC or CNC. The reason is that not only the latter have more exact machining accuracy but also the value of roughness Ra is less one order than the formmer, it can be reached 0.025μm. Therefore, the die’s initial blanked accuracy depends on the accuracy of manufacture, quality and so on.
The normal error of the punch die is the practicable error when the fist cutter grinding and the last cutter grinding before the die produce the last qualified product. As the increase of cutter grinding, caused the measure the nature wear of the dies are gradual increasing, the error of punching part increase also, so the parts are blew proof. And the die will be unused. The hole on the part and inner because the measure of wear will be small and small gradually, and its outside form will be lager in the same reason. Therefore, the hole and inner form in the part will be made mould according to one-way positive deviation or nearly equal to the limit max measure. In like manner, the punching part’s appearance will be made mould according to one-way negative deviation or nearly equal to limit mini measure. For this will be broaden the normal error, and the cutter grinding times will be increased, the life will be long.
The limit error in punching parts are the max dimension error which practicable allowed in the parts with limit error. This kind of parts usually are the last qualified products before the die discard.
1. fixed error
At the whole process when the New punching die between just input production to discard, the changeless master error that in qualified part are called fixed error. It’s magnitude is the deviation when the die production qualified products before the first cutter grinding. Also is the initial error, but the die have initial punching accuracy at this time. Because of the abrade of parts, the die after grinding will be change the dimension error. And the increment of deviation will oversize as the times of cutter grinding. So the punching accuracy after cutter grinding also called “grinding accuracy” and lower tan initial accuracy. The fixed error depend on the elements factor as followed :
(1) the material , sorts, structure, (form) dimension, and thick of panel
the magnitude of punching gap and degree of homogeneity are have a important effect for the dimension accuracy. Different punching process, material, thick of panel, have completely different gap and punching accuracy. A gear H62 which made in yellow brass with the same mode number m=0.34, 2mm thick and had a center hole, when the gap get C=0.5%t (single edge) , and punched with compound punching die, and the dimension accuracy reached IT7, the part have a flat surface ,the verticality of tangent plane reached 89.5°, its roughness Ra magnitude are 12.5μm, height of burr are 0.10mm; and the punching part are punched with progressive die, the gap C=7%t (single edge) , initial accuracy are IT11, and have an more rough surface, even can see the gap with eyes. In the usual situation, flushes a material and its thickness t is theselection punching gap main basis. Once the designation gap haddetermined flushes the plane size the fixed error main body; Flushesthe structure rigidity and the three-dimensional shape affects itsshape position precision.
(2) punching craft and molder structure type
Uses the different ramming craft, flushes a precision and the fixederror difference is really big. Except that the above piece gearexample showed, the essence flushes the craft and ordinary punching flushes a precision and the fixed error differs outside a magnitude,even if in ordinary punching center, uses the different gap punching, thefixed error difference very is also big. For example material thickt=1.5mm H62 brass punching, selects C <= the 40%t unilateral I kind ofsmall gap punching compared to select C <= 8%t (unilaterally) III kindof big gap punching, will flush a fixed error to enlarge 40% ~ 60%, theprecision at least will fall a level. Side in addition, whether thereis picks builds a row of type side, flushes a error to have far to bebigger than has builds a row of type to flush. Side not builds a rowof type to flush. Side not builds a row of type to flush a precisionto be lower than the IT12 level side, but most has builds a row oftype to flush a precision in IT11 between ~ IT9 level, material thickt > 4mm flushes, the size precision can lower some. Different die’s structure type, because is suitable the rammingmaterial to be thick and the manufacture precision difference, causesto flush a fixed error to have leaves. Compound die center, multi-locations continuous type compound die because flushes continuously toduplicate the localization to add on the pattern making error to bebigger, therefore it flushes a fixed error compound punching die to wantcompared to the single location Big 1 ~ 2 levels
(3) gap size and degree of homogeneity
the flange and other sheet forming sgene rally all must first punching (fall material) the plate to launch the semi finished materials, after also has the forming to fall the material, the incision obtains the single end product to flush. Therefore punching the work, including is commonly used punching hole, the margin, cut side and so on, regarding each kind of sheet pressing partall is necessary. Therefore punching the gap to flushes a out form in chprecision to have the decisive influence. punching the gap small and is even, may cause punching the size gain high accuracy. Regarding drawability, is curving and so on mould, the gap greatly will decide increases flushes the oral area size error and the snapping back. The gapnon-uniformity can cause to flush a burr enlarges and incurs cutting edge the non-uniform attrition.
(4) ramming equipment elastic deformation In the ramming process
After the punch press load bearing can have the certain elastic deformation. Although this kind of distortion quantity according to flushes the pressure the size to change also to have the obvious directivity, but on the pressing part, mainly is to has the volume ramming archery target stamping, embosses, the equalization, the pressure is raised, the wave, flushes crowds, the shape, the flange, hits flatly, thinly changes draw ability and so on the craft work punching forming flushes, has the significant influence to its ramming aspect size precision
普通全鋼沖模的沖壓精度分析
板料沖壓件的精度準(zhǔn)確顯示出其沖模的沖壓精度。而任何沖件的線性尺寸精度與形位精度主要取決于沖模沖裁和立體成形沖壓件展開平毛坯的落料精度。因此,多工步復(fù)合沖壓的單工位復(fù)合模、多工位連續(xù)模的沖壓精度,在普通沖壓的眾多種類與不同結(jié)構(gòu)的沖模中,最具典型性和代表性。
沖模的沖壓精度分析
對(duì)沖模投產(chǎn)至失效報(bào)廢各個(gè)時(shí)期沖件的實(shí)際誤差分析,可以看出其增大的時(shí)期及趨向,從而分析其增大的因素。新沖模投產(chǎn)至第一次刃磨前沖制沖件的誤差即所謂的初始誤差;沖模經(jīng)過20次左右刃磨至失效報(bào)廢前沖制的沖件誤差稱之為常規(guī)誤差;而沖模失效報(bào)廢前沖制的最后一批合格沖件的允許最大誤差稱之為極限誤差。在現(xiàn)場(chǎng),確定沖模刃磨壽命的依據(jù)是沖件沖孔與落料的毛刺高度。由于任何成形件都具有沖裁作業(yè)(毛坯落料或沖孔),對(duì)于復(fù)合模尤為如此。所以,沖件毛刺高度的觸模檢查和測(cè)量并按企業(yè)標(biāo)準(zhǔn)或JB4129-85《沖壓件毛刺高度》對(duì)照檢測(cè)就顯得十分重要。
沖模的初始誤差通常是沖模整個(gè)壽命中沖件誤差最小的。其大小主要取決于沖模的制造精度與質(zhì)量及沖件尺寸、料厚以及間隙值大小與均勻度。沖模的制造精度及質(zhì)量又取決于制模工藝。對(duì)于料厚t≤1mm的中碳鋼復(fù)合沖裁模沖件,實(shí)驗(yàn)結(jié)果與生產(chǎn)實(shí)踐都證明,電火花線切割制造的沖模沖件毛刺高度比用成型磨或NC與CNC連續(xù)軌跡座標(biāo)磨即精密磨削工藝制造的沖模沖件要高25%~30%。這是因?yàn)楹笳卟粌H加工精度高,而且加工面粗糙度Ra值要比前者小一個(gè)數(shù)量級(jí),可達(dá)到0.025μm。因此,沖模的制造精度與質(zhì)量等因素決定了沖模的初始沖壓精度,也造就了沖件的初始誤差。
沖件的常規(guī)誤差是沖模經(jīng)第一次刃磨到最后一次刃磨后沖出最后一個(gè)合格沖件為止,沖件實(shí)際具有的誤差。隨著刃磨次數(shù)的增加,刃口的自然磨損而造成的尺寸增量逐漸加大,沖件的誤差也隨之加大。當(dāng)其誤差超過極限偏差時(shí),沖件就不合格,沖模也就失效報(bào)廢。沖件上孔與內(nèi)形因凸模磨損尺寸會(huì)逐漸變小;其外形落料尺寸會(huì)因凹模磨損而逐漸增大。所以,沖件上孔與內(nèi)形按單向正偏差標(biāo)允差并依接近或幾乎等于極限最大尺寸制模。同理,沖件外形落料按單向負(fù)偏差標(biāo)注允差并依接近或幾乎等于極限最小尺寸制模。這樣就使沖件的常規(guī)誤差范圍擴(kuò)大,沖??扇心ゴ螖?shù)增加,模具壽命提高。
沖件的極限誤差是具有極限偏差的沖件所具有的實(shí)際允許的最大尺寸誤差。這類沖件通常是在沖模失效報(bào)廢前沖制的最后一批合格沖件。
1、固定誤差
新沖模在指定的沖壓設(shè)備上投入使用至失效報(bào)廢的整個(gè)(總)壽命過程中,其合格沖件誤差的主導(dǎo)部分固定不變即所謂固定誤差。其大小就是新沖模第一次刃磨前沖制的合格沖件的偏差,也即沖模的初始誤差,而此時(shí)的沖模具有初始沖壓精度。刃磨后的沖模,因其工作零件(凸、凹模)磨損而改變尺寸誤差,使沖件識(shí)差增量隨刃磨次數(shù)增加而逐漸加大,故沖模刃磨后的沖壓精度亦稱“刃磨精度”比其初始精度要低。沖模沖件的固定誤差取決于以下各要素:
(1)沖件的材料種類、結(jié)構(gòu)(形狀)尺寸及料厚
沖裁間隙的大小及其均勻度對(duì)沖裁件的尺寸精度有決定性的影響。不同沖裁工藝、不同材料種類與不等料厚,間隙相差懸殊,沖壓精度差異很大。同一種模數(shù)m=0.34的2mm的料厚、中心有孔的H62黃銅材料片齒輪復(fù)合模沖件,當(dāng)取間隙C=0.5%t(單邊),用復(fù)合精沖模沖制,沖件尺寸精度達(dá)到IT7級(jí),沖件平直無拱彎,沖切面垂直度可達(dá)89.5°,其表面粗糙Ra值為0.2μm;而用普通復(fù)合模沖制,間隙C=5%t(單邊),沖件初始誤差亦即沖模的初始沖壓精度為1T9級(jí),沖切面粗糙度Ra值為12.5μm,毛刺高度為0.10mm;還是這個(gè)沖件用連續(xù)模沖制,間隙C=7%t(單邊),初始沖件精度為IT11級(jí),沖切面更粗糙,甚至有肉眼可見的臺(tái)階。通常情況下,沖件材料及其厚度t是選取沖裁間隙的主要依據(jù)。一旦選定間隙就確定了沖件的平面尺寸的固定誤差的主體;沖件結(jié)構(gòu)剛度及立體形狀則影響其形位精度。
(2)沖壓工藝及沖模結(jié)構(gòu)類型
采用不同的沖壓工藝,沖件的精度及固定誤差相差甚大。除上述片齒輪實(shí)例說明,精沖工藝與普通沖裁的沖件精度與固定誤差相差一個(gè)數(shù)量級(jí)之外,即便在普通沖裁中,采用不同間隙沖裁,固定誤差相差也很大。例如料厚t=1.5mm的H62黃銅沖裁件,選用C≤40%t單邊Ⅰ類小間隙沖裁比選用C≤8%t(單邊)Ⅲ類大間隙沖裁,沖件固定誤差將加大40%~60%,精度至少降一級(jí)。此外,采有無搭邊排樣,沖件的誤差要遠(yuǎn)大于有搭邊排樣沖件。無搭邊排樣沖件。無搭邊排樣沖件的精度低于IT12級(jí),而多數(shù)有搭邊排樣的沖件精度在IT11~I(xiàn)T9級(jí)之間,料厚t>4mm的沖件,尺寸精度會(huì)更低一些。
不同沖模結(jié)構(gòu)類型,由于適用沖壓料厚及制造精度的差異,導(dǎo)致沖件的固定誤差有別。復(fù)合模中,多工位連續(xù)式復(fù)合模由于沖件連續(xù)重復(fù)定位加上制模誤差較大,故其沖件的固定誤差比單工位復(fù)合沖裁模要 大1~2級(jí)。
(3)間隙的大小與均勻度
拉深、彎曲、翻邊及其他板料成形件一般都要先沖裁(落料)出平板展開毛坯,也有成形后落料、切開得到單個(gè)成品沖件。故沖裁作業(yè),包括常用的沖孔、切口、切邊等,對(duì)于每種板料沖壓件都是必要的。所以沖裁間隙對(duì)沖件的外廓尺寸精度有決定性的影響。沖裁間隙小而均勻,可使沖裁尺寸獲取更高精度。對(duì)于拉深、彎曲等成形模,間隙大定將增大沖件口部尺寸誤差及回彈。間隙不均勻會(huì)使沖件毛刺加大并招致刃口的不均勻磨損。
(4)沖壓設(shè)備的彈性變形
在沖壓過程中,沖床承載后會(huì)產(chǎn)生一定的彈性變形。雖然這種變形量依沖壓力的大小變化且具有明顯的方向性,但就沖壓件,主要是對(duì)具有體積沖壓性質(zhì)的壓印、壓花、校平、壓凸、起波、沖擠、鐓形、翻邊、鐓粗、打扁、變薄拉深等工藝作業(yè)沖制成形的沖件,對(duì)其沖壓方面的尺寸精度有重大影響。
收藏