喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請(qǐng)放心下載,,文件全都包含在內(nèi),,【有疑問(wèn)咨詢QQ:414951605 或 1304139763】
=============================================
喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請(qǐng)放心下載,,文件全都包含在內(nèi),,【有疑問(wèn)咨詢QQ:414951605 或 1304139763】
=============================================
編號(hào)
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
相關(guān)資料
題目: 電腦漸開(kāi)線齒輪齒形誤差
檢測(cè)儀設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化專業(yè)
學(xué) 號(hào): 0923017
學(xué)生姓名: 朱敬松
指導(dǎo)教師: 屠德剛 (職稱:高工 )
(職稱: )
2012年5月25日
目 錄
一、畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
四、實(shí)習(xí)鑒定表
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
開(kāi)題報(bào)告
題目: 電腦漸開(kāi)線齒輪齒形
誤差檢測(cè)儀設(shè)計(jì)
機(jī) 電 系 機(jī)械設(shè)計(jì)及自動(dòng)化 專業(yè)
學(xué) 號(hào): 0923017
學(xué)生姓名: 朱敬松
指導(dǎo)教師: 屠德剛 (職稱:高工 )
(職稱: )
2012 年 11 月
課題來(lái)源
科學(xué)依據(jù)(包括課題的科學(xué)意義;國(guó)內(nèi)外研究概況、水平和發(fā)展趨勢(shì);應(yīng)用前景等)
從上世紀(jì)80年代開(kāi)始,齒輪測(cè)量中心的開(kāi)發(fā)受到眾多齒輪測(cè)量?jī)x器制造商的重視;90年代逐步形成了系列化產(chǎn)品推向市場(chǎng)。CNC齒輪測(cè)量中心是信息技術(shù)、計(jì)算機(jī)技術(shù)和數(shù)控技術(shù)在齒輪測(cè)量?jī)x器上集成應(yīng)用的結(jié)晶,主要用于齒輪單項(xiàng)幾何精度的檢測(cè),也可用于(靜態(tài))齒輪整體誤差的測(cè)量。
德國(guó)KLINGELNBERG的P系列齒輪測(cè)量中心,其特點(diǎn)是采用了專利的三維數(shù)字式高精度光柵測(cè)量頭(使用了HEINDENHAIN的超高精度光柵);性能穩(wěn)定的優(yōu)質(zhì)鑄鐵床身,高性能直線電機(jī)驅(qū)動(dòng)系統(tǒng);高精度滾珠軸系和密珠滾動(dòng)導(dǎo)軌。儀器精度達(dá)到德國(guó)標(biāo)準(zhǔn)1級(jí)。據(jù)報(bào)道該廠生產(chǎn)并經(jīng)精化的一臺(tái)P65齒輪測(cè)量中心,被英國(guó)國(guó)家齒輪計(jì)量實(shí)驗(yàn)室選定,作為英國(guó)齒輪精度傳遞及標(biāo)定的基準(zhǔn)儀器。美國(guó)M&M的齒輪測(cè)量中心,其三維高精度電感測(cè)量頭;花崗石基座;精密氣浮軸系以及精密直線滾動(dòng)體結(jié)構(gòu)導(dǎo)軌,成為該儀器的特色(近年也采用了直線電機(jī)驅(qū)動(dòng)),儀器測(cè)量不確定度為2μm。德國(guó)MAHR的GMX275采用的模擬量測(cè)量頭,可選擇掃描或單點(diǎn)采樣方式,可以按0.1°間距轉(zhuǎn)動(dòng),使測(cè)頭的測(cè)尖能處于被測(cè)齒面的法面上,儀器測(cè)量不確定度在測(cè)量空間內(nèi)為(2.3μm+L/200)。國(guó)外齒輪測(cè)量中心廠商,大多還開(kāi)發(fā)了測(cè)量軟件和加工機(jī)床的參數(shù)修正軟件,選用相關(guān)軟件,還能用于反求工程對(duì)工件參數(shù)進(jìn)行測(cè)定。高精度和一機(jī)多能的特點(diǎn),使齒輪測(cè)量中心更適合于工廠計(jì)量站使用。日本的齒輪測(cè)量?jī)x器制造商,在我國(guó)市場(chǎng)經(jīng)過(guò)近十年的沉寂后近年來(lái)亮相頻繁。大阪精機(jī)在GC-HP系列齒輪測(cè)量?jī)x器的基礎(chǔ)上,開(kāi)發(fā)出CNC電子創(chuàng)成式的CLP系列齒輪測(cè)量?jī)x器。特別值得一提的是最近在國(guó)內(nèi)參展亮相的東京技術(shù)儀器公司(Tokyo Technical Instruments Inc.)。在2003年底上海中國(guó)國(guó)際齒輪傳動(dòng)、制造技術(shù)及裝備展覽會(huì)上該廠首次展出TTI-300E型CNC齒輪檢測(cè)儀,據(jù)稱其質(zhì)量較小的測(cè)頭部件能單獨(dú)在徑向運(yùn)動(dòng),便于快速測(cè)量齒輪齒距偏差。密珠軸系的主軸回轉(zhuǎn)精度可達(dá)0.03μm,儀器測(cè)量重復(fù)性達(dá)到0.5μm。
國(guó)內(nèi)近年來(lái),CNC齒輪測(cè)量中心有了長(zhǎng)足的發(fā)展,哈爾濱量具刃具廠、哈爾濱精達(dá)公司都先后成功開(kāi)發(fā)出了系列產(chǎn)品。哈量的3903A齒輪測(cè)量中心,經(jīng)過(guò)幾年努力,儀器精度和測(cè)量速度已達(dá)到或接近KLINGELNBERG公司產(chǎn)品的先進(jìn)水平。精達(dá)公司作為后起之秀,發(fā)展引人矚目,其JD、JDS系列齒輪測(cè)量中心。
目前在國(guó)內(nèi)產(chǎn)品中銷量很多。國(guó)產(chǎn)齒輪測(cè)量中心的質(zhì)量和性能不斷提高,已經(jīng)具有和國(guó)外產(chǎn)品競(jìng)爭(zhēng)的能力。不過(guò)在儀器精度、穩(wěn)定性,尤其在測(cè)量軟件、儀器故障診斷功能等方面,和國(guó)外還有一定差距。令人欣慰的是國(guó)內(nèi)齒輪量?jī)x制造商已有共識(shí),已聯(lián)合高校院所協(xié)同攻關(guān)努力縮小差距;隨著性價(jià)比的迅速提高,參與市場(chǎng)競(jìng)爭(zhēng)能力的增強(qiáng),國(guó)產(chǎn)齒輪測(cè)量中心的發(fā)展前景看好。
當(dāng)前齒輪制造業(yè)的一個(gè)發(fā)展趨勢(shì),是將齒輪測(cè)量技術(shù)和齒輪設(shè)計(jì)、加工制造進(jìn)行集成,實(shí)現(xiàn)齒輪制造信息的融合及CAD/CAM/CAT的集成,從而構(gòu)建一個(gè)先進(jìn)的齒輪閉環(huán)制造系統(tǒng)(由于通常由數(shù)字化信息來(lái)實(shí)現(xiàn),可稱為數(shù)字化閉環(huán)制造系統(tǒng))。隨著齒輪制造業(yè)的快速發(fā)展,因此齒輪測(cè)量技術(shù)和齒輪測(cè)量?jī)x器的發(fā)展方向更加明確。
江蘇泰州LG冷機(jī)有限公司
研究?jī)?nèi)容
電腦漸開(kāi)線齒輪齒形誤差檢測(cè)儀的設(shè)計(jì)
一.結(jié)構(gòu)設(shè)計(jì)部分:
1.檢測(cè)儀的結(jié)構(gòu)方案設(shè)計(jì)
2.檢測(cè)儀的設(shè)計(jì)計(jì)算及說(shuō)明
二.重要零件的有限元分析
擬采取的研究方法、技術(shù)路線、實(shí)驗(yàn)方案及可行性分析
本次畢業(yè)設(shè)計(jì)首先是對(duì)檢測(cè)儀市場(chǎng)使用情況的數(shù)據(jù)進(jìn)行采集工作,以確定設(shè)計(jì)的方案。
其次,分析所具備的條件因素,考慮廠方的成組技術(shù)要求,進(jìn)行方案的制定。
最后,開(kāi)始零件設(shè)計(jì)和重要零件三維繪圖設(shè)計(jì)。
本儀器用于測(cè)量直齒或斜齒的圓柱齒輪的漸開(kāi)線齒輪誤差。這種儀器不需要不同尺寸的基圓盤(pán)。通過(guò)在儀器上的數(shù)控裝置可以將被測(cè)工件的基圓半徑調(diào)準(zhǔn)到0.002MM.儀器表有電感比較儀,其傳感器將被測(cè)工件齒形的漸開(kāi)線誤差傳到指示電表上。本課題主要是著重與儀器機(jī)械結(jié)構(gòu)方面的設(shè)計(jì),并制作相關(guān)的三維軟件,以滿足設(shè)計(jì)改進(jìn),質(zhì)量控制,售后服務(wù),商務(wù)洽談方面的要求。
研究計(jì)劃及預(yù)期成果
特色或創(chuàng)新之處
本儀器的重要零件用三維軟件進(jìn)行有限元分析,可靠度更高。
本儀器適用不同基圓大小的齒輪齒形誤差,我分別在老式手動(dòng)檢測(cè)儀的Y向和Z向作了改動(dòng),改造后,被測(cè)齒輪通過(guò)安裝心桿來(lái)固定在兩頂尖之間,用兩個(gè)步進(jìn)電機(jī)分別代替以前的純手動(dòng)部件,控制帶測(cè)頭的工作臺(tái)和被測(cè)齒輪的相互匹配運(yùn)動(dòng),他們分別是用Y向步進(jìn)電機(jī)控制測(cè)頭的工作臺(tái)運(yùn)動(dòng),用Z向步進(jìn)電機(jī)來(lái)控制被測(cè)齒輪的旋轉(zhuǎn)運(yùn)動(dòng),用軟件(也就是用單片機(jī)語(yǔ)言編程)來(lái)完成這些運(yùn)動(dòng)。
已具備的條件和尚需解決的問(wèn)題
目前在國(guó)內(nèi)產(chǎn)品中銷量很多。國(guó)產(chǎn)齒輪測(cè)量中心的質(zhì)量和性能不斷提高,已經(jīng)具有和國(guó)外產(chǎn)品競(jìng)爭(zhēng)的能力。不過(guò)在儀器精度、穩(wěn)定性,尤其在測(cè)量軟件、儀器故障診斷功能等方面,和國(guó)外還有一定差距。
指導(dǎo)教師意見(jiàn)
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見(jiàn)
教研室主任簽名:
年 月 日
系意見(jiàn)
主管領(lǐng)導(dǎo)簽名:
年 月 日
GEAR AND SHAFT INTRODUCTION
Abstract: The important position of the wheel gear and shaft can't falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, using for many situations respectively.So we must be they to the understanding of the wheel gear and shaft in many ways .
Key words: Wheel gear;Shaft
In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.
Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.
The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.
Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.
Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.
Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.
When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.
Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.
It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.
A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elements pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.
The word “shaft” covers numerous variations, such as axles and spindles.: a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.
When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.
Although the von method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.
Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as flows
1. Rim type with internally expanding shoes
2. Rim type with externally contracting shoes
3. Band type
4. Disk or axial type
5. Cone type
6. Miscellaneous type
The analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:
1. Assume or determine the distribution of pressure on the frictional surfaces.
2. Find a relation between the maximum pressure and the pressure at any point
3. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions.
Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.
A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.
Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.
Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.
An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.
Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained. 齒輪和軸的介紹
摘 要:在傳統(tǒng)機(jī)械和現(xiàn)代機(jī)械中齒輪和軸的重要地位是不可動(dòng)搖的。齒輪和軸主要安裝在主軸箱來(lái)傳遞力的方向。通過(guò)加工制造它們可以分為許多的型號(hào),分別用于許多的場(chǎng)合。所以我們對(duì)齒輪和軸的了解和認(rèn)識(shí)必須是多層次多方位的。
關(guān)鍵詞:齒輪;軸
在直齒圓柱齒輪的受力分析中,是假定各力作用在單一平面的。我們將研究作用力具有三維坐標(biāo)的齒輪。因此,在斜齒輪的情況下,其齒向是不平行于回轉(zhuǎn)軸線的。而在錐齒輪的情況中各回轉(zhuǎn)軸線互相不平行。像我們要討論的那樣,尚有其他道理需要學(xué)習(xí),掌握。
斜齒輪用于傳遞平行軸之間的運(yùn)動(dòng)。傾斜角度每個(gè)齒輪都一樣,但一個(gè)必須右旋斜齒,而另一個(gè)必須是左旋斜齒。齒的形狀是一濺開(kāi)線螺旋面。如果一張被剪成平行四邊形(矩形)的紙張包圍在齒輪圓柱體上,紙上印出齒的角刃邊就變成斜線。如果我展開(kāi)這張紙,在血角刃邊上的每一個(gè)點(diǎn)就發(fā)生一漸開(kāi)線曲線。
直齒圓柱齒輪輪齒的初始接觸處是跨過(guò)整個(gè)齒面而伸展開(kāi)來(lái)的線。斜齒輪輪齒的初始接觸是一點(diǎn),當(dāng)齒進(jìn)入更多的嚙合時(shí),它就變成線。在直齒圓柱齒輪中,接觸是平行于回轉(zhuǎn)軸線的。在斜齒輪中,該先是跨過(guò)齒面的對(duì)角線。它是齒輪逐漸進(jìn)行嚙合并平穩(wěn)的從一個(gè)齒到另一個(gè)齒傳遞運(yùn)動(dòng),那樣就使斜齒輪具有高速重載下平穩(wěn)傳遞運(yùn)動(dòng)的能力。斜齒輪使軸的軸承承受徑向和軸向力。當(dāng)軸向推力變的大了或由于別的原因而產(chǎn)生某些影響時(shí),那就可以使用人字齒輪。雙斜齒輪(人字齒輪)是與反向的并排地裝在同一軸上的兩個(gè)斜齒輪等效。他們產(chǎn)生相反的軸向推力作用,這樣就消除了軸向推力。當(dāng)兩個(gè)或更多個(gè)單向齒斜齒輪被在同一軸上時(shí),齒輪的齒向應(yīng)作選擇,以便產(chǎn)生最小的軸向推力。
交錯(cuò)軸斜齒輪或螺旋齒輪,他們是軸中心線既不相交也不平行。交錯(cuò)軸斜齒輪的齒彼此之間發(fā)生點(diǎn)接觸,它隨著齒輪的磨合而變成線接觸。因此他們只能傳遞小的載荷和主要用于儀器設(shè)備中,而且肯定不能推薦在動(dòng)力傳動(dòng)中使用。交錯(cuò)軸斜齒輪與斜齒輪之間在被安裝后互相捏合之前是沒(méi)有任何區(qū)別的。它們是以同樣的方法進(jìn)行制造。一對(duì)相嚙合的交錯(cuò)軸斜齒輪通常具有同樣的齒向,即左旋主動(dòng)齒輪跟右旋從動(dòng)齒輪相嚙合。在交錯(cuò)軸斜齒設(shè)計(jì)中,當(dāng)該齒的斜角相等時(shí)所產(chǎn)生滑移速度最小。然而當(dāng)該齒的斜角不相等時(shí),如果兩個(gè)齒輪具有相同齒向的話,大斜角齒輪應(yīng)用作主動(dòng)齒輪。
蝸輪與交錯(cuò)軸斜齒輪相似。小齒輪即蝸桿具有較小的齒數(shù),通常是一到四齒,由于它們完全纏繞在節(jié)圓柱上,因此它們被稱為螺紋齒。與其相配的齒輪叫做蝸輪,蝸輪不是真正的斜齒輪。蝸桿和蝸輪通常是用于向垂直相交軸之間的傳動(dòng)提供大的角速度減速比。蝸輪不是斜齒輪,因?yàn)槠潺X頂面做成中凹形狀以適配蝸桿曲率,目的是要形成線接觸而不是點(diǎn)接觸。然而蝸桿蝸輪傳動(dòng)機(jī)構(gòu)中存在齒間有較大滑移速度的缺點(diǎn),正像交錯(cuò)軸斜齒輪那樣。
蝸桿蝸輪機(jī)構(gòu)有單包圍和雙包圍機(jī)構(gòu)。單包圍機(jī)構(gòu)就是蝸輪包裹著蝸桿的一種機(jī)構(gòu)。當(dāng)然,如果每個(gè)構(gòu)件各自局部地包圍著對(duì)方的蝸輪機(jī)構(gòu)就是雙包圍蝸輪蝸桿機(jī)構(gòu)。著兩者之間的重要區(qū)別是,在雙包圍蝸輪組的輪齒間有面接觸,而在單包圍的蝸輪組的輪齒間有線接觸。一個(gè)裝置中的蝸桿和蝸輪正像交錯(cuò)軸斜齒輪那樣具有相同的齒向,但是其斜齒齒角的角度是極不相同的。蝸桿上的齒斜角度通常很大,而蝸輪上的則極小,因此習(xí)慣常規(guī)定蝸桿的導(dǎo)角,那就是蝸桿齒斜角的余角;也規(guī)定了蝸輪上的齒斜角,該兩角之和就等于90度的軸線交角。
當(dāng)齒輪要用來(lái)傳遞相交軸之間的運(yùn)動(dòng)時(shí),就需要某種形式的錐齒輪。雖然錐齒輪通常制造成能構(gòu)成90度軸交角,但它們也可產(chǎn)生任何角度的軸交角。輪齒可以鑄出,銑制或滾切加工。僅就滾齒而言就可達(dá)一級(jí)精度。在典型的錐齒輪安裝中,其中一個(gè)錐齒輪常常裝于支承的外側(cè)。這意味著軸的撓曲情況更加明顯而使在輪齒接觸上具有更大的影響。
另外一個(gè)難題,發(fā)生在難于預(yù)示錐齒輪輪齒上的應(yīng)力,實(shí)際上是由于齒輪被加工成錐狀造成的。
直齒錐齒輪易于設(shè)計(jì)且制造簡(jiǎn)單,如果他們安裝的精密而確定,在運(yùn)轉(zhuǎn)中會(huì)產(chǎn)生良好效果。然而在直齒圓柱齒輪情況下,在節(jié)線速度較高時(shí),他們將發(fā)出噪音。在這些情況下,螺旋錐齒輪比直齒輪能產(chǎn)生平穩(wěn)的多的嚙合作用,因此碰到高速運(yùn)轉(zhuǎn)的場(chǎng)合那是很有用的。當(dāng)在汽車的各種不同用途中,有一個(gè)帶偏心軸的類似錐齒輪的機(jī)構(gòu),那是常常所希望的。這樣的齒輪機(jī)構(gòu)叫做準(zhǔn)雙曲面齒輪機(jī)構(gòu),因?yàn)樗鼈兊墓?jié)面是雙曲回轉(zhuǎn)面。這種齒輪之間的輪齒作用是沿著一根直線上產(chǎn)生滾動(dòng)與滑動(dòng)相結(jié)合的運(yùn)動(dòng)并和蝸輪蝸桿的輪齒作用有著更多的共同之處。
軸是一種轉(zhuǎn)動(dòng)或靜止的桿件。通常有圓形橫截面。在軸上安裝像齒輪,皮帶輪,飛輪,曲柄,鏈輪和其他動(dòng)力傳遞零件。軸能夠承受彎曲,拉伸,壓縮或扭轉(zhuǎn)載荷,這些力相結(jié)合時(shí),人們期望找到靜強(qiáng)度和疲勞強(qiáng)度作為設(shè)計(jì)的重要依據(jù)。因?yàn)閱胃S可以承受靜壓力,變應(yīng)力和交變應(yīng)力,所有的應(yīng)力作用都是同時(shí)發(fā)生的。
“軸”這個(gè)詞包含著多種含義,例如心軸和主軸。心軸也是軸,既可以旋轉(zhuǎn)也可以靜止的軸,但不承受扭轉(zhuǎn)載荷。短的轉(zhuǎn)動(dòng)軸常常被稱為主軸。
當(dāng)軸的彎曲或扭轉(zhuǎn)變形必需被限制于很小的范圍內(nèi)時(shí),其尺寸應(yīng)根據(jù)變形來(lái)確定,然后進(jìn)行應(yīng)力分析。因此,如若軸要做得有足夠的剛度以致?lián)锨惶?,那么合?yīng)力符合安全要求那是完全可能的。但決不意味著設(shè)計(jì)者要保證;它們是安全的,軸幾乎總是要進(jìn)行計(jì)算的,知道它們是處在可以接受的允許的極限以內(nèi)。因之,設(shè)計(jì)者無(wú)論何時(shí),動(dòng)力傳遞零件,如齒輪或皮帶輪都應(yīng)該設(shè)置在靠近支持軸承附近。這就減低了彎矩,因而減小變形和彎曲應(yīng)力。
雖然來(lái)自M.H.G方法在設(shè)計(jì)軸中難于應(yīng)用,但它可能用來(lái)準(zhǔn)確預(yù)示實(shí)際失效。這樣,它是一個(gè)檢驗(yàn)已經(jīng)設(shè)計(jì)好了的軸的或者發(fā)現(xiàn)具體軸在運(yùn)轉(zhuǎn)中發(fā)生損壞原因的好方法。進(jìn)而有著大量的關(guān)于設(shè)計(jì)的問(wèn)題,其中由于別的考慮例如剛度考慮,尺寸已得到較好的限制。
設(shè)計(jì)者去查找關(guān)于圓角尺寸、熱處理、表面光潔度和是否要進(jìn)行噴丸處理等資料,那真正的唯一的需要是實(shí)現(xiàn)所要求的壽命和可靠性。
由于他們的功能相似,將離合器和制動(dòng)器一起處理。簡(jiǎn)化摩擦離合器或制動(dòng)器的動(dòng)力學(xué)表達(dá)式中,各自以角速度w1和w2運(yùn)動(dòng)的兩個(gè)轉(zhuǎn)動(dòng)慣量I1和I2,在制動(dòng)器情況下其中之一可能是零,由于接上離合器或制動(dòng)器而最終要導(dǎo)致同樣的速度。因?yàn)閮蓚€(gè)構(gòu)件開(kāi)始以不同速度運(yùn)轉(zhuǎn)而使打滑發(fā)生了,并且在作用過(guò)程中能量散失,結(jié)果導(dǎo)致溫升。在分析這些裝置的性能時(shí),我們應(yīng)注意到作用力,傳遞的扭矩,散失的能量和溫升。所傳遞的扭矩關(guān)系到作用力,摩擦系數(shù)和離合器或制動(dòng)器的幾何狀況。這是一個(gè)靜力學(xué)問(wèn)題。這個(gè)問(wèn)題將必須對(duì)每個(gè)幾何機(jī)構(gòu)形狀分別進(jìn)行研究。然而溫升與能量損失有關(guān),研究溫升可能與制動(dòng)器或離合器的類型無(wú)關(guān)。因?yàn)閹缀涡螤畹闹匾允巧岜砻?。各種各樣的離合器和制動(dòng)器可作如下分類:
1 輪緣式內(nèi)膨脹制凍塊;
2 輪緣式外接觸制動(dòng)塊;
3 條帶式;
4 盤(pán)型或軸向式;
5 圓錐型
7