喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
黑龍江科技學(xué)院
畢業(yè)設(shè)計(論文)任務(wù)書
姓名:
任務(wù)下達日期: 年月日
設(shè)計(論文)開始日期: 年 月 日
設(shè)計(論文)完成日期: 年 月 日
一、設(shè)計(論文)題目: 加工渦輪盤榫槽的臥式拉床夾具
二、專題題目: 夾具在現(xiàn)代工程技術(shù)中的應(yīng)用
三、設(shè)計的目的和意義:完成拉削航空發(fā)動機的渦輪盤榫槽的工裝夾具設(shè)計,保證榫槽在本道工序中的精度要求。渦輪盤是航空發(fā)動機上一個十分重要的零件,材料為38GrMnAlA,榫槽精度要求高,機械加工難度大。渦輪盤的榫槽的加工精度對整個發(fā)動機的性能和壽命都有很大的影響,因此本夾具的設(shè)計就有著十分重要的意義。
四、設(shè)計(論文)主要內(nèi)容:本文主要通過分析航空發(fā)動機上渦輪盤榫槽的結(jié)構(gòu)特點、加工工藝等情況,確定設(shè)計方案,完成了加工渦輪盤榫槽的臥式拉床夾具的結(jié)構(gòu)設(shè)計。此夾具主要用于拉削83076967型渦輪盤上均布的47個樅樹型的榫槽,選用一端平面和短圓柱作為定位基準,著重對定位裝置和分度裝置進行了詳細系統(tǒng)地設(shè)計,選擇了分度精度較高的端齒盤分度裝置,為了能夠減輕勞動強度,提高勞動生產(chǎn)率,用液壓機構(gòu)作為分度裝置的動力系統(tǒng)。簡述了該夾具的使用和調(diào)整方法,并綜合分析了提高樅樹型榫槽表面粗糙度的方法。
五、設(shè)計目標:對渦輪盤進行精密地定位和準確地分度,以滿足拉削過程中榫槽的精度要求,對重要的尺寸進行詳細地計算。針對不同的零件要求,選用不同的材料,不至于造成材料的浪費。將部分結(jié)構(gòu)模塊化,設(shè)計成可更換的,以擴大該工裝夾具的工藝范圍。
六、進度計劃: 2007年3月13日至3月31日進行為期3周的生產(chǎn)實習(xí);4月1日至4月10日完成對設(shè)計題目的資料收集與查詢;4月11日至4月20日完成夾具的定位裝置、加緊裝置的設(shè)計;4月21日至5月15日完成分度裝置、輔助機構(gòu)和總體機構(gòu)的設(shè)計;5月16日至5月31日進行夾具裝配圖、零件圖圖紙的繪制;6月1日至6月10日進行畢業(yè)設(shè)計說明書的編寫;6月11日至6月20日最后的審稿及說明書和圖紙的打印。
七、參考文獻資料:袁哲俊,劉華明主編.刀具設(shè)計手冊.機械工業(yè)出版社.1999:527-551;劉新德主編.袖珍液壓氣動手冊.機械工業(yè)出版社.2003:225-268;林文斌,陳本通主編.國防工業(yè)出版社.1987:400-466;上海柴油機廠工藝設(shè)備研究所主編.金屬切削機床夾具設(shè)計.機械工業(yè)出版社.1987.220-355;胡家秀主編.簡明機械零件設(shè)計實用手冊.機械工業(yè)出版社. 2004:61-200;王文斌主編.機械設(shè)計手冊.機械工業(yè)出版社.2005:20-110;
李文雙,于信偉 蘇發(fā)主編.機械制造工程學(xué).黑龍江科學(xué)技術(shù)出版社.2004:203-266;孫明主編.機械工程基礎(chǔ).黑龍江人民出版社. 2000:142-215;孫麗媛主編.機械制造工藝及專用夾具.冶金工業(yè)出版社.2002:23-84;路甬祥主編.液壓氣動技術(shù)手冊.2003:524-609;
指 導(dǎo) 教 師:
院(系)主管領(lǐng)導(dǎo):
年 月 日
封 首
論文題目:加工渦輪盤榫槽的臥式拉床夾具
學(xué)生所在專業(yè):機械制造設(shè)計及其自動化
導(dǎo)師簽字:
學(xué)生本人簽字:
摘 要
本文主要是通過分析航空發(fā)動機上的渦輪盤榫槽的結(jié)構(gòu)特點,加工工藝等情況,確定設(shè)計方案,完成了加工渦輪盤榫槽的臥式拉床夾具的設(shè)計。
此夾具主要用于拉削83076967型渦輪盤上均布的47個樅樹型的榫槽,由于本工序中對榫槽工作面距榫槽中心的距離以及47個榫槽的累記均布很小,并且榫槽的拉削加工工位較多,所以在此夾具的設(shè)計過程中,選用一端平面和短圓柱作為定位基準,著重對定位裝置和分度裝置進行了詳細系統(tǒng)地設(shè)計,采用體積小、轉(zhuǎn)動靈活、操作方便、分度精度較高的端齒盤分度裝置,為了能夠減輕勞動強度,提高勞動生產(chǎn)率,用液壓機構(gòu)作為分度裝置的動力系統(tǒng)。對夾具上各裝置作了合理、正確的布置,盡量減小了夾具的體積。簡述了該夾具的使用和調(diào)整方法,并綜合分析了提高樅樹型榫槽表面粗糙度的方法。
關(guān)鍵詞 渦輪盤榫槽 定位誤差 端齒盤式分度盤
Abstract
This article mainly is through the analysis aircraft engine on turbine disk key way unique feature, situations and so on processing craft, determined the design proposal, has completed the processing turbine disk key way horizontal-type broaching machine tongs design.
This tongs mainly uses in on the broaching 83076967 turbine disks the even cloth 47 fir tree's key way, because in this working procedure is apart from the key way center to the key way working surface the distance as well as 47 key ways records the even cloth to be very small tiredly, and the key way broaching processes the location to be many, as soon as therefore in this tongs design process, selects holds straight the surface and the short column took the localization datum, emphatically carried on to the positioning device and the spacing device systematically has designed in detail, uses the volume slightly, the rotation nimble, the ease of operation, the indexing precision high end tooth plate spacing device, in order to could reduce the labor intensity, enhanced the labor productivity, took the spacing device with the hydraulic gearDynamic system. Each installment has made reasonably, the correct arrangement to the tongs on, reduced the tongs volume as far as possible. Has summarized this tongs use and the adjustment method, and the generalized analysis enhanced the fir tree key way surface roughness the method.
Key word fir tree key way position error end tooth disc type graduated disc
目 錄
摘 要…………………………………………………………………………… I
Abstract……………………………………………………………………… II
第1章 緒 論………………………………………………………………… 1
1.1 現(xiàn)代機床夾具發(fā)展的方向………………………………………… 1
1.2 現(xiàn)代制造業(yè)對夾具設(shè)計的要求…………………………………… 2
1.3 項目提出的背景及研究的內(nèi)容…………………………………… 2
1.4 項目研究的方法、預(yù)期結(jié)果及意義……………………………… 3
第2章 渦輪盤件榫槽的加工特點及工藝裝備………………………………4
2.1 渦輪盤榫槽加工工藝的分析 ………………………………………4
2.1.1 渦輪盤榫槽加工工序圖的分析…………………………… 4
2.1.2 零件毛坯種類、特點……………………………………… 5
2.1.3 渦論盤的加工工藝規(guī)程分析……………………………… 5
2.2 拉削方法及工藝裝備的分析與選取……………………………… 6
2.2.1 拉削方法…………………………………………………… 6
2.2.2 工藝裝備……………………………………………………7
第3章 渦輪盤分度夾具設(shè)計方案的確定………………………………… 10
3.1 定位原理和定位機構(gòu)………………………………………………10
3.2 定位基準的選取以及定位誤差的分析……………………………11
3.2.1 定位基準的選擇和定位裝置的設(shè)計…………………… 11
3.2.2 定位誤差的分析和計算………………………………… 11
3.3 夾緊裝置的設(shè)計……………………………………………………14
3.3.1 夾緊方案的確定………………………………………… 14
3.3.2 夾緊力的確定…………………………………………… 15
3.4 分度結(jié)構(gòu)的設(shè)計……………………………………………………18
3.4.1 分度方式選擇…………………………………………… 18
3.4.2 端齒盤式分度盤的優(yōu)點………………………………… 18
3.4.3 端齒盤式分度盤設(shè)計…………………………………… 19
3.5 分度裝置的動力系統(tǒng)設(shè)計…………………………………………20
3.5.1 端齒盤分合的動力系統(tǒng)……………………………………… 21
3.5.2 分度回轉(zhuǎn)機構(gòu)動力設(shè)計………………………………… 22
3.5.3輔助夾緊裝置液壓缸的設(shè)計……………………………… 24
3.6 夾具輔助機構(gòu)設(shè)計…………………………………………………25
3.6.1 轉(zhuǎn)動剎車機構(gòu)…………………………………………… 25
3.6.2 分度指示機構(gòu)…………………………………………… 26
3.7 主要零件設(shè)計要點…………………………………………………26
3.8 主要尺寸計算………………………………………………………27
第4章 分度夾具使用和調(diào)整…………………………………………………30
4.1 分度夾具使用………………………………………………………30
4.1.1 加工準備………………………………………………… 30
4.1.2 控制過程………………………………………………… 30
4.1.3 拉削試料及試件………………………………………… 31
4.2 分度夾具調(diào)整和提高榫槽精度的方法……………………………32
4.2.1 調(diào)整徑向尺寸…………………………………………… 32
4.2.2 調(diào)整分度………………………………………………… 32
4.2.3 提高榫槽粗糙度方法…………………………………… 33
第5章 經(jīng)濟性與資源分析……………………………………………………34
結(jié) 論……………………………………………………………………………35
致 謝……………………………………………………………………………36
參考文獻……………………………………………………………………… 37
專題論文……………………………………………………………………… 38
附錄1 中文譯文……………………………………………………………… 46
附錄2 外文文獻……………………………………………………………… 54
IV
附錄1中文譯文
柔性制造系統(tǒng)
介紹對制造系統(tǒng)和先進的制造業(yè)的技術(shù)的討論,對定義制造系統(tǒng)這一術(shù)語是用的。
一個制造系統(tǒng)可以被定義為一系列的把原材料轉(zhuǎn)換成有用的形式和最終產(chǎn)品的增值的制造過程。
柔性是現(xiàn)代制造業(yè)的一個重要特性, 它的意思就是制造系統(tǒng)的工藝范圍廣、適應(yīng)生產(chǎn)的能力強 ,有時候也能相對地提高生產(chǎn)率。柔性制造系統(tǒng)能很快地調(diào)整生產(chǎn)線以適應(yīng)不同零件的加工。
柔性制造系統(tǒng)是由一個或一組機床,在計算機控制系統(tǒng)和自動化物料運儲系統(tǒng)的協(xié)調(diào)控制下工作的。之所以把它叫做一個柔性制造系統(tǒng),是因為在計算機控制下,這個系統(tǒng)能夠根據(jù)零件的不同進行多樣性、廣泛地調(diào)整。
典型的FMS包括:
? 處理設(shè)備,例如:機床、工作站、和機械手
? 物料運儲設(shè)備,例如:機械手、運送裝置和 AGVs(自動導(dǎo)向運輸裝置)
? 一個交換系統(tǒng)
? 一個計算機控制系統(tǒng)
柔性制造系統(tǒng)業(yè)主要向著集成制造的目標發(fā)展。 它包括自動制造過程的集成, 在柔性制造業(yè)系統(tǒng), 那些數(shù)控機床 (例如 ,車床,鉆床)和自動化的物料運儲系統(tǒng)經(jīng)由計算機網(wǎng)絡(luò)控制系統(tǒng)進行共享和及時的協(xié)調(diào)。 這就是一個小規(guī)模的集成。
柔性制造業(yè)系統(tǒng)向著能夠完全集成的制造目標逐步形成了一些自動化制造的觀念:
? 計算機對機床的數(shù)字控制 (CNC)
? 分配數(shù)字控制制造系統(tǒng) (DNC)
? 自動物料運儲系統(tǒng)
? 成組技術(shù) (部份的組合)
當這些自動化程序,將機器和人的思想進行集成在一起成為一個系統(tǒng),帶來了這些自動化的過程,這就是FMS結(jié)果。 人和計算機是FMS的主要的角色。當然,在這個系統(tǒng)中人的勞動量要比用手工操作的制造系統(tǒng)少的多。 但是人仍然在FMS 的操作中扮演著一個重要的角色。 人所從事的工作主要包括以下幾項:
? 修理和維護設(shè)備
? 工具更換和安裝
? 裝載和卸貨系統(tǒng)
? 數(shù)據(jù)輸入
? 部分計劃變更
? 計劃的實施
柔性制造系統(tǒng)的設(shè)備 , 像所有的制造業(yè)的設(shè)備一樣,也一定能被檢測出嚴重的故障, 和被破壞。當有問題被發(fā)現(xiàn)的時候,一個人修理時必須認清楚它的來源,并且能夠制定解決問題的措施。 人也可以根據(jù)那些制定的措施來維修那些發(fā)生故障的設(shè)備。 即使是所有的系統(tǒng)都能正常的運作,也必須進行周期的維護工作。
操作員應(yīng)也能夠調(diào)整機器和工具, 并且給工作系統(tǒng)配置必需品。 增加工具能提高 FMS的能力, 但是不能除去人在工具變更中的作用。 FMS的裝載和卸貨是相同的。 一但原材料已經(jīng)被載入自動化物料運儲系統(tǒng),它將以被規(guī)定的方式由系統(tǒng)控制運動。 但是,在完成的產(chǎn)品卸貨之前進行新材料的的載入。
人和那些計算機的也是相互作用的,人必須通過計算機來控制 FMS 的程序。當再重新配置 FMS, 生產(chǎn)另外類型的零件的時候 , 他們也必須改變原來的程序。人在FMS 中扮演著小而且重要的角色,但是這個角色在關(guān)鍵時候仍然是十分重要的。
在 FMS 的所有控制系統(tǒng)都是由計算機提供。 個別的機床在 FMS 里面被 CNC 控制。 全部的系統(tǒng)被 DNC 控制。自動化物料運儲系統(tǒng)就象數(shù)據(jù)收集、系統(tǒng)監(jiān)聽、工具控制和交通控制的其他功能一樣,也是用計算機來控制的,人/ 計算機的相互作用這就是 FMS 的柔性。
一、 柔性制造業(yè)的發(fā)展歷史
柔性制造業(yè)最初是有英國的莫林公司在 1960 年提出的, 24小時無人值守自動運行 。 這個24小時的無人值守的系統(tǒng)就是真正的 FMS 。但是,由于自動化,集成化和計算機控制技術(shù)仍未發(fā)展到可以能夠支撐系統(tǒng), 所以它一開始就有很多局限性。 首先FMS 是在支撐系統(tǒng)發(fā)展完善的時間之前發(fā)展的。它發(fā)展到最后被丟棄也是再所難免的。
在1960年到1970年間,柔性制造業(yè)的概念還只是存在與一些大學(xué)里。 然而,在 1970年后期和 1980年早期由于復(fù)雜的計算機控制技術(shù)的出現(xiàn),柔性制造業(yè)發(fā)展迅速的概念。 在美國柔性制造業(yè)主要使用者在汽車,卡車和發(fā)動機的制造業(yè)中。
二、柔性制造業(yè)的原理
在生產(chǎn)制造過程中制造的生產(chǎn)率和柔性之間總是存在著一定的不協(xié)調(diào)的關(guān)系。 一方面是生產(chǎn)線中有很高的生產(chǎn)率, 但是柔性非常低。另一方面是獨立的 CNC 雖然生產(chǎn)率低,但是能提供最大的柔性, 但是有能力的機器。 在這兩方面之間是柔性制造業(yè)發(fā)展最合適的方面。當仍然維持柔性制造的情況下,能夠制造出在保持較高生產(chǎn)率,在以上兩方面總折中的制造系統(tǒng)制造嗎?
生產(chǎn)線能夠以高的生產(chǎn)率生產(chǎn)大量的零件。 這種生產(chǎn)需要采取很多的裝備, 但是可以把這些大量的設(shè)備的相同的部分關(guān)掉。 它的主要缺點就是在任何一個部份中,哪怕甚至十分小的設(shè)計的變化也能夠引起整個的生產(chǎn)線的停工或者是重新再配置。 這樣的生產(chǎn)線最主要的弱點就是在沒有寶貴的時間進行重新配置的情況下,不能夠生產(chǎn)制造同一部機械的各個不同的部份的零件。
傳統(tǒng)地CNC機床已經(jīng)開始用來生產(chǎn)那些在設(shè)計中微不足道的各種不同的的部份零件。因為這些設(shè)備可能被很快地就被重新調(diào)整、規(guī)劃,以適應(yīng)較小的或是甚至更主要的設(shè)計的改變 , 所以這些機床對這一個目的是十分理想的。 但是,這些機車設(shè)備不能夠獨立地或以較高的生產(chǎn)率來生產(chǎn)體積大零件。
FMS能夠生產(chǎn)體積大的和生產(chǎn)率高而優(yōu)越于獨立的CNC機床。 雖然這些機床和柔性十分不相配,但是它們也是閉合的。對于柔性制造系統(tǒng)特別地重要的、大概是最集中的能力就是在現(xiàn)在的生產(chǎn)制造形式下,能夠以很高的生產(chǎn)率、很大的柔性,為了生產(chǎn)另外的零件或產(chǎn)品快速地重新配置生產(chǎn)設(shè)備。柔性制造業(yè)就填充這一持續(xù)很久的制造業(yè)的空缺。
柔性制造業(yè)憑借自己的特有的能力,給生產(chǎn)者帶來了很多的便利:
? 柔性可以加工一系列的零件
? 加工零件的任意性
? 同時制造不同的零件
? 減少裝備時間和調(diào)試時間
? 高效率地應(yīng)用機床
? 減少直接的和間接的勞動成本
? 能夠?qū)Σ煌牟牧线M行識別處理
? 如果一部機床損壞,不影響零件的制造
三、柔性制造系統(tǒng)組成
FMS 主要有四個部分來組成:
? 機床工具
? 控制系統(tǒng)
? 材料處理系統(tǒng)
? 操作人員
1.機床工具
一個柔性制造系統(tǒng)和任何其他的制造業(yè)的系統(tǒng)一樣,使用的是同一類型的機床工具,它們是自動化或用手操作的,用工具工作。這些機床包括車床,磨床,鉆床 , 鋸床, 等。
在 FMS 中所使用的機床的類型實際上是靠這些機床各自的用途來設(shè)定的,一些 FMS 需要被設(shè)計成符合定義明確要求的特性。在這些情況下,包括在系統(tǒng)中的機床的操作計劃都是必須的。 一個這樣的系統(tǒng)就是一個能夠很好提供服務(wù)的系統(tǒng)。
在一個車間的配置設(shè)定中,真實的請求不能被及時地識別任何其他的設(shè)定,或一定必然要有很高的可靠性、可能性, 機器系統(tǒng)會至少能夠包含標準的制造業(yè)的操作。這樣的系統(tǒng)就是一個用途一般的系統(tǒng)。
2.控制系統(tǒng)
控制系統(tǒng)是為FMS的其它系統(tǒng)提供了許多的不同控制功能:
? 規(guī)劃零件的運儲和分配
? 控制和監(jiān)聽工作流程
? 控制加工過程
? 系統(tǒng)/工具控制/監(jiān)聽
在FMS的控制系統(tǒng)中運行的計算機控制區(qū)域能夠?qū)θ魏我粋€FMS的部分的所有的活動進行控制和檢測。FMS 控制軟件是相當復(fù)雜和煩瑣的,因為它必須同時地執(zhí)行許多不同的任務(wù)。不管曾經(jīng)在這一區(qū)域中實行的什么樣的研究,都沒有和FMS軟件一樣的設(shè)計方案功能和結(jié)構(gòu)。
調(diào)度程序功能包括計劃該如何生成FMS的命令通用的容量,考慮機床工具的現(xiàn)在工作狀態(tài),工作進程,工作工具,工作夾具,等等。 行程能夠自動地安排,也可能在一個操作員的協(xié)助下進行工作。 也有很多FMS的控制系統(tǒng)是聯(lián)合自動機械和手工操作員操作的。發(fā)送功能包括實行程序調(diào)度和協(xié)調(diào)車間內(nèi)各部分的動作,也就是說 , 能夠決定何時何地傳送一個貨盤, 什么時候該開始在在加工中心中處理, 等等。
監(jiān)視器的功能與監(jiān)聽工作進展 , 機器狀態(tài) , 警報信息等等, 有關(guān)系,而且能夠給調(diào)度進程和發(fā)送者提供輸入所產(chǎn)生各種不同的制造報告和警報信息。系統(tǒng)里面處理部份原料的運輸由一個傳送控制模塊來管理。 用多點控制的運輸工具由一個 AGV 系統(tǒng)控制,控制邏輯就變的相當?shù)貜?fù)雜,并成為FMS控制軟件的一個十分重要的部份。當在載入?yún)^(qū)域的部分為它收集做好準備時, 在一個終端機中的一個裝載/ 卸載模塊能夠在載入?yún)^(qū)域分別告知操作者進入到系統(tǒng),并且使他或她能夠更新控制系統(tǒng)的狀態(tài)。一個儲存控制模塊能夠中保留一個部份被儲存的帳戶在AS/RS 中的精確位置。 工具管理模塊維持所有的有關(guān)工具的賬戶數(shù)據(jù)的并保持工具在FMS中的真實的位置。工具管理模塊能夠管理遠遠勝過正常的數(shù)目,而且此外,模塊還能控制工具的準備和流程。 DNC 功能是在生產(chǎn)車間中為FMS控制程序和工作機床和各種裝置之間提供接口技術(shù)。對 FMS來說, 生產(chǎn)車間的裝備中DNC功能和作用是很重要的; 一個功能齊全的DNC通過通信的條款能夠控制在遠處的機械的請求。關(guān)于以前的DNC 討論的片段)
事實上有很多機器工具的制造商已經(jīng)發(fā)展了專有的通信條款, 這些條款是很復(fù)雜的,因為在FMS中包含中很多設(shè)備的的發(fā)展和集成。 除此之外,那些多設(shè)備的物理的集成實際上是十分困難的;舉例來說,在托盤中各種各樣的裝載/ 卸載的機械裝置都是應(yīng)用很復(fù)雜的機械工具,它們來自各種不同的生產(chǎn)廠商。因此,僅僅可取的方法就是從主要的機械工具制造商中購買一個比較接近用具的關(guān)鍵系統(tǒng),工具購買實現(xiàn) FMS 的唯一適當?shù)姆绞揭徺I來自主要的工作母機制造業(yè)者之一的一個關(guān)鍵系統(tǒng)。這個系統(tǒng)必須是可靠的和能很好地進行測試,并且應(yīng)該由多個廠商負責幫助這個系統(tǒng)進行故障的處理。
3.物料運儲系統(tǒng)
自動化的物料運儲系統(tǒng)的是一個的能夠協(xié)助獨立的 CNC 機床形成一組,并加入到全面的 FMS 之內(nèi)的基本的成分。系統(tǒng)必須能讓那些安裝在托盤上的工件從一個工作站移動到另外一個工作站上。當工件等待著去一個指定的工作站被處理的時候,這個系統(tǒng)必須盡可能地給它提供適當?shù)奈恢谩?
物料運儲系統(tǒng)必須能夠卸載在工作站上的工件,并且能夠裝載另外一個運輸?shù)较乱粋€工作站上的零件。它還必須能夠適應(yīng)計算機的控制,并且完全地與柔性制造系統(tǒng)中的其他的成分相容。最后, 在FMS中物料運儲系統(tǒng)必須能夠承受車間的嚴格環(huán)境。 一些 FMSs 配置的自動化引導(dǎo)小車(AGVs),如物料運儲就是一個重要的方法。
在FMS中自動儲存和取回系統(tǒng) (AS/RS) 常常集合在一起的。 這使系統(tǒng)能在無人操縱的情況下正常地運行,降低了勞動強度。在白天班將那些未加工的零件固定在貨盤中,載入系統(tǒng)并且儲存的AS/RS中,等待著機器可能的需要時的命令。當工序完成的時候, 運輸機就把零件運回到AS/RS,在AS/RS里等待下一個工序或者被從 FMS 被卸載,F(xiàn)MSs 的完全無人值守的操作非常少見的;在大部份的情形下一或較多的操作員將會總是不在長場的, 他們很少在重要的情形下干涉系統(tǒng),(這個被計算機控制系統(tǒng)正常地自動地工作 ) ,但是系統(tǒng)能夠糾正那些較小的錯誤,并且能讓系統(tǒng)高的效率運行。
4. 人類的操作員
FMS 的最后成分是人的成分。 雖然柔性制造的觀念是盡量減少制造過程中人的參與次數(shù),但是它還不能完全不用人參與。而且,人在柔性制造業(yè)中所扮演的角色仍然是十分重要的。包括規(guī)劃,操作,監(jiān)聽,控制,和維護系統(tǒng)。
2.3.4 制造控制階層的性質(zhì)
當描述和討論制造控制和在先進制造系統(tǒng)自動化工廠中應(yīng)用 FMS 和 CIM( 計算機整合的制造業(yè) ) 技術(shù)的時候,它對于安排許多計劃和在透視階層的控制活動是很方便的,全部的策略計劃在頂部,和制造程序的操作控制在底部。
那兩個最重要的組織,NBS( 國家標準局 )現(xiàn)在被叫做NIST( 國家標準和技術(shù)的學(xué)會 ) ,美國的(NBS模型) 和 ISO( 國際的標準化組織 ),提議為先進的制造系統(tǒng)的控制水平的定義了一個國際的標準( ISO- 模型 )。 NBS模型識別五個層次,即工廠層,車間層,單元層、工作站和設(shè)備層。 ISO- 模型增加了一層,在它的模型中包括六個層次,即企業(yè),工廠層/制造廠,部分層/區(qū)域,車間層,工作站,設(shè)備層。這些階層的模型在計劃和執(zhí)行計算機集成制造系統(tǒng)中主要地被當作叁考的框架使用,但是他們也是可適用于討論生產(chǎn)計劃和大概的控制活動。
這對討論制造業(yè)的控制水平的定義是有關(guān)系的,因為在文學(xué)和商業(yè)產(chǎn)品的描述中常常會用到一些自動化工廠的專業(yè)術(shù)語。不同的級的典型的工作和職務(wù)在如下列各項:
1)企業(yè)控制包括全部的企業(yè)的戰(zhàn)略計劃。 這是產(chǎn)品的需求計劃,市場策略 , 和區(qū)分企業(yè)內(nèi)部的各分區(qū)的工作。 制造業(yè)控制被運用在企業(yè)的標準,就是負責的完成企業(yè)的使命; 這些年來規(guī)劃的水平在應(yīng)用中得到了衡量,并沒有常常發(fā)生變化。
2)設(shè)備控制負責實現(xiàn)企業(yè)策略。 它在制造設(shè)備控制和運行方面有這樣的功能例如加工制造和產(chǎn)品工程學(xué),數(shù)據(jù)管理和其他的長期活動。
3)區(qū)域控制負責在車間內(nèi)的資源配置和制造的協(xié)調(diào)。 這一個典型的操作控制水平能夠在好幾個天或數(shù)個星期維持同一個狀態(tài)。 這一個層也經(jīng)常被稱為命" 車間層 " ,“車間控制層”術(shù)語包括區(qū)域控制和下一層的控制,在美國的著作中,車間控制經(jīng)常被稱為 "制造活動控制 ",在 柔性制造系統(tǒng)中FMS控制軟件將會對區(qū)域?qū)嵭锌刂啤?
4)單元控制負責在制造單元里工作站間的作業(yè)調(diào)度。這包括資源分配, 作業(yè)指令的發(fā)放,工作路線的確定,分配給個別的工作站 , 對工作和工作站的工作情況的監(jiān)聽。
5)工作站控制負責協(xié)調(diào)工作站上被實行運行分配到工作站的一個工作,這一個功能操作可以在幾秒到幾小時的時間內(nèi)完成
6)設(shè)備層是在一部機器上執(zhí)行具體的工作。 在一個工作機床上,這一層的特點是局部地的控制機床的主軸速度 , 冷卻等等。
附錄2外文文獻
Flexible Manufacturing System
As an introduction to the subsequent discussions of production system and advanced manufacturing technologies it is useful to present a definition of the term manufacturing system .A manufacturing system can be defined as a series of value-adding manufacturing processes converting the raw materials into more useful forms and eventually finished products.
In the modern manufacturing setting,flexibility is an important characteristic It means that a manufacturing system is versatile and adaptable ,while also capable of handing relatively high production runs. A flexible manufacturing system is quickly modified to produce a completely different line of parts.
A flexible manufacturing is an individual machine or group of machines served by an automated materials handing system that is computer controlled and has a tool handing capability .Because of its tool handing capability and computer control, such a system can be continually reconfigured to manufacture a wide variety of parts. This is why it is called a flexible manufacturing system.
A FMS typically encompasses:
? Process equipment e.g., machine tools, assembly stations, and robots
? Material handing equipment e.g. , robots, conveyors, and AGVs(automated guided vehicles)
? A communication system
? A computer control system
Flexible manufacturing represents major step toward the goal of fully integrated manufacturing. It involves integration of automated production process. In flexible manufacturing, the automated manufacturing machine (i.e. ,lathe mill, drill) and the automated materials handing system share instantaneous communication via a computer network.
Flexible manufacturing tales a major step toward the goal of fully integrated manufacturing by integrating several automated manufacturing concepts:
? Computer numerical control (CNC) of individual machine tools
? Distributed numerical control (DNC) of manufacturing system
? Automated materials handing systems
? Group technology (families of parts)
When these automated processes, machine, and concepts are brought together in one integrated system, an FMS is the result. Humans and computers play major roles in an FMS. The amount of human labor is much less than with a manually operated manufacturing system, of course. However, humans still play a vital role in the operation of an FMS. Human tasks include the following:
? Equipment troubleshooting maintenance, and repair
? Tool changing and setup
? Loading and unloading the system
? Data input
? Changing of parts programs
? Development of programs
Flexible manufacturing system equipment, like all manufacturing equipment, must be monitored for bugs, malfunctions, and breakdowns. When a problem is discovered, a human troubleshooter must identify its source and prescribe corrective measures. Humans also undertake the prescribed measures to repair the malfunctioning equipment. Even when all system are properly functioning, periodic maintenance is necessary.
Human operators also set up machines, change tools, and reconfigure systems as necessary. The tool handing capability of an FMS increases, but does not eliminate human involvement in tool changing and setup. The same is true of loading and unloading the FMS. Once raw material has been loaded onto the automated materials handing system, it is moved through the system in the prescribed manner. However, the original loading onto the unloading of finished products.
Humans are also needed for interaction with the computer .Humans develop part programs that control the FMS via computer .They also change the programs as necessary when reconfiguring the FMS to produce another type of part or parts .Humans play less labor-intensive roles in an FMS, but the roles are still critical.
Control at all levels in an FMS is provided by computers. Individual machine Tools within an FMS are controlled by CNC. The overall system is controlled by DNC. the automated materials handling system is computer controlled, as are other functions including data collection, system monitoring, tool control, and traffic control, Human/computer interaction is the flexibility of an FMS.
一、Hisorical Development of Flexible Manufacturing
Flexible manufacturing was born in the mid-1960s when the British firm Molins, Ltd. Developed its System 24. System 24 was a real FMS. However, it was doomed from the outset because automation, integration, and computer control technology had not yet been developed to the pont where they could properly support the system. The first FMS was a development that was ahead of its time. As such, it was eventually discarded as unworkable.
Flexible manufacturing remained an academic concept through the remained of the 1960s and 1970s. However, with the emergence of sophisticated computer control technology in the late 1970s and early 1980s, flexible manufacturing became a viable concept. The first major users of flexible manufacturing in the United States were manufacturers of automobiles, trucks, and tractors.
二、 Rationale for Flexible Manufacturing
In manufacturing there have always been tradeoffs between production rates and flexibility. At one end of the spectrum are transfer lines capable of high production rates, but low flexibility. At the other end of the spectrum are independent CNC machines that offer maximum flexibility, but are capable only of low production rates. Flexible manufacturing falls in the middle of the spectrum. There has always been a need in manufacturing for a system that could produce higher volume and production runs than could independent machines, while still maintaining flexibility.
Transfer lines are capable of producing large volumes of parts at high production rates. The line takes a great deal of setup, but can turn out identical parts in large quantities. Its chief shortcoming is that even minor design changes in a part can cause the entire line to be shut down and reconfigured. This is a critical weakness because it means that transfer lines cannot produce different parts, even parts from within the same family, without costly and time-cinsuming shutdown and reconfiguration.
Traditionally, CNC machines have been used to produce small volumes of parts that differ slightly in design. Such machines are ideal for this purpose because they can be quickly reprogrammed to accommodate minor or even major design changes. However, as independent machines they cannot produce parts in large volumes or at high production rates.
An FMS can handle higher volumes and production rates than independent CNC machines. They cannot quite match such machines for flexibility, but they come close. What is particularly significant about the middle ground capabilities of flexible manufacturing is that most manufacturing situations require medium production rates to produce medium volumes with enough flexibility to quickly reconfigure to produce another part or product. Flexible manufacturing fills this long-standing void in manufacturing.
Flexible manufacturing, with its ground capabilities, offers a number of advantages for manufacturers:
? Flexibility within a family of parts
? Random feeding of parts
? Simultaneous production of different parts
? Decreased setup time and lead time
? More efficient machine usage
? Decreased direct and indirect labor costs
? Ability to handle different materials
? Ability to continue some production if one machine breaks down
三、Flexible Manufacturing System Components
An FMS has four major components:
? Machine tools
? Control system
? Materials handling system
? Human operators
1、 Machine Tools
A flexible manufacturing system uses the same types of machine tools as any other manufacturing system, be it automated or manually operated. These include lathes, mills, drills, saws, an so on. The type of machine tools actually included in an FMS depends on the setting in which the machine will be used. Some FMSs are designed to meet a specific, well-defined need. In these cases the machine tools included in the system will be only those necessary for the planned operations. Such a system would be known as a dedicated system.
In a job-shop setting, or any other setting in which the actual application is not known ahead of time or must necessarily include a wide range of possibilities, machines capable of performing at least the standard manufacturing operations would be included. Such systems are known as general purpose systems.
2. Control System
The control system for an FMS serves a number of different control functions for system:
? Storage and distribution of parts program
? Work flow control and monitoring
? Production control
? System/tool control/monitoring
The control area with the computer running the FMS control system is the center from which all activities in the FMS are controlled and monitored. The FMS control software is rather complicated and sophisticated since it has to carry out many different tasks simultaneously. Despite the considerable research that has been carried out in this area, there is no general answer to designing the functions and architecture of FMS software.
The scheduler function involves planning how to produce the current volume of orders in the FMS, considering the current status of machine tools, work-in-pocess, tooling, fixtures, and so on. the scheduling can be done automatically or can be assisted by an operator. Most FMS control systems combine automatic and manually by the operator. the dispatcher function involves carrying out the schedule and coordinating the activities on the shop floor, that is, deciding when and where to transport a pallet, when to start a process on machining center, and so on.
The monitor function is concerned with monitoring work progress, machine status, alarm messages, and so on, and providing input to the scheduler and dispatcher as well as generating various production reports and alarm messages. A transport control module manages the transportation of parts and palettes within the system. Having an AGV system with multiple vehicles, the routing control logic can become rather sophisticated and become a critical part of the FMS control software. A load/unload module with a terminal at the loading area shows the operators which parts to introduce to the system and enables him or her to update the status of the control system when parts are ready for collection at the loading area. A storage control module keeps an account of which parts are stored in the AS/RS as well as their exact location. the tool management module keeps an account of all relevant tool data and the actual location of tools in the FMS .Tool management can be rather comprehensive since the number of tools normally exceeds the number of parts in the system, and furthermore ,the module must control the preparation and flow of tools. the DNC function provides interfaces between the FMS control program and machine tools and devices on the shop floor. the DNC capabilities of the shop floor equipment are essential to a FMS; a “full” DNC communication protocol enabling remote control of the machines is required (see the discussion on DNC in the previous section).
The fact that most vendors of machine tools have developed proprietary communication protocols is complicating the development and integration of FMSs including multi-vendor equipment. Furthermore, the physical integration of multi-vendor equipment is difficult; for example, the differences in pallet load/unload mechanisms complicate the use of machine tools from different vendors. Therefore, the only advisable approach for implementing a FMS is to purchase a turn-key system from one of the main machine tool manufacturers. there systems are reliable and well tested and should the system not function satisfactorily a single vendor responsibility will facilitate remedy of malfunctions.
3. Materials Handing System
The automated materials handing system is a fundamental component that helps mold a group of independent CNC machines into a comprehensive FMS. The system must be capable of accepting workpieces mounted on pallets and moving them from workstation to workstation as needed. It must also be able to place workpieces on hold as they wait to be processed at a given workstation.
The materials handing system must be able to unload a workpiece at one station and load another for transport to the next station. It must accommodate computer control and be completely compatible with other components in the flexible manufacturing system .Finally, the materials handing system for an FMS must be able to withstand the rigors of a shop environment. Some FMSs are configured with automated guided vehicles (AGV s) as a principal means of materials handling.
An automated storage and retrieval system (AS/RS) is very often integrated in the FMS. This enables the system to run one or two unmanned shifts with reduced workforce. In the day shift raw parts are fixed on pallets loaded into the system and stored in the AS/RS waiting for available capacity on the machines required. When the process is finished, the transporter can move the part back to the AS/RS where it waits for the next process or to be unloaded from the FMS when the workforce reports for workforce reports for work next morning. The fully unmanned operation of FMSs is very rare; in most cases one or more operators will always be present, not so much to intervene in critical situations ( this is normally done automatically by the computer control system ) but to correct minor faults and keep the system running with highest possible utilization.
4. Human Operators
The final component in an FMS is the human component. Although flexible manufacturing as a concept decreases the amount of human involvement in manufacturing, it does not eliminate it completely. Further, the roles humans play in flexible manufacturing are critical. There include programming, operating, monitoring, controlling, and maintaining the system.
四、The Hierarchical Nature and discussing production control
When describing and discussing production control and facto