SJ90單螺桿擠出機(jī)結(jié)構(gòu)設(shè)計(jì)
SJ90單螺桿擠出機(jī)結(jié)構(gòu)設(shè)計(jì),SJ90單螺桿擠出機(jī)結(jié)構(gòu)設(shè)計(jì),sj90,螺桿,擠出機(jī),結(jié)構(gòu)設(shè)計(jì)
附錄1 英文翻譯
A DESIGN ABOUT MAIN MACHINE OF THE EXTRUDER
Both the elastic melt(Fig.1)and the hydrodynamic melt extruders(Fig.2)involve shearing the material between two rotating disks to change it from a solid To a semi-liquid melt(external heat is initially required to begin the operation but once started,the conversion of mechanical input into heat keeps the material fluid). In both devices,the material is fed to the periphery area between the rotating disks and then flows to the disks enter.
Both the elastic melt and the hydrodynamic extruders depend on entirely different phenomena to move the material through the extruder. In the case of the elastic melt extruder,the movement of material is dependent on the theological properties of the melt To function in an elastic melt extruder, the melt must be a viscoelastic (i.e., somewhat rubbery or capable of exhibiting a significant amount of elastic behavior at the Shear rates existing in the machine).It is this elastic property that produces the internal pressure which moves the melt through the device.
In contrast, a purely viscous liquid can be extruded from the hydrodynamic extruder since the driving force is derived from the geometry of the rotors between which the material is being sheared.Briefly,the driving pressure is created by internal pressure differentials created when the melt is forced to now into a smaller cross-section.
In the reciprocating ram type of extruder (Fig.3),a special valving system is provided so that the pulsating flow from two alternately operative pistons can be combined into a single smooth How stream,which effectively provides a continuous output,By using ,two alternating cylinders,each may be reloaded with material while the other is extruding, thus eliminating the batch characteristics of the conventional ram extruder.The purpose of this arrangement was to develop an arrangement was to develop an efficient extruder which would not degrade shear-sensitive thermoplastic materials.
0f the three named,the elastic melt extruder has thus far received the most attention. Some of the major problems originally involved,such as rather low out-put, high thrust bearing loads,and difficulty in feeding the material to the shear area, appear to have been solved to a large extent. The first commercial unit to be offered is shown in Fig.4 .There is current interest in the possibility of using the elastic melt extruder as a plasticizing device and even as a film or profile extrusion production unit. Such extruders are also being evaluated for plastication operations in blow molding and injection molding.
Extruder design
Component parts common to all standard single screw extruders are shown in Fig.5.Basically,the extruder consists of a steel cylinder in which a solid or cored shaft, running the entire length of the cylinder is rotated. This rotating shaft has a continuous helical channel cut into it, which constitutes the extruder screw.
The length of the helical channel usually extends the entire length of the screw from the feed throat of the extruder barrel to the forward end of the screw.
The helical ridge of metal left when machining the screw channel in the metal blank is called the screw flight .The distance between flights,or lead,is usually equal to the outer diameter of the screw. This is done primarily for ease of machining.Normally the screw flight diameter is the same as the inner diameter of the cylinder minus a carefully specified clearance provided to allow for rotation.
The extruder cylinder or barrel is lined with a hard alloy,usually integrally cast XalloyTM,and may be provided with both heating and cooling systems. The thermocouples of the temperature control,system are placed in wells' at equal intervals along the barrel. Four to six control zones are normally used for longer barrel extruders with length-to-diameter ratios(L/D) in the range of 20:1 to 28:1.
Power for rotating the screw is supplied by a variable speed motor drive through a gear reduction unit,a coupling,and the thrust bearing assembly of the extruder.The thrust bearing assembly must be ruggedly designed to take the very high backward loadings on the screw developed by pressures generated at the for Ward end of the screw.
After the granules have passed through the extruder barrel have been fully plasticized, the melt is forced through a breaker plate which may also be used to support a screen pack, the functions of both being 1) to insure that contaminants are not passed on to the die and 2) to create a back pressure to help stabilize flow of material through the extruder. A streamlined valve is mulch more useful in controlling melt pressure and has replaced the screen pack for this purpose in recent extruders. After the melt passes through the plate and screen pack or valve. It flow through an adapter which channels the flow to the die.
Extruder size
The size of a single screw extruder is specified by the inside diameter of the barrel. Commonly available standard size are 1.5,2, 2.5,3.25,3.5,4.5,6,and 8 in with sizes above8 in available on special order.
Average output capacities which may be developed with different sizes of plasticizing extruders are correlated with screw size in Fig6.which is presented only as a rough guide; actual output rates depend heavily on the material being run as well as on the equipment; that is,drive HP,screw design, etc.
Barrels
The American extruder industry has generally standardized on barrels which have centrifugally cast-in,special alloy liners for pressures up to 10.000 psi .For pressures greater than that, a steel tube with a cast-in liner is shrink fitted into a larger outer barrel. Bimetallic liners are designed to be corrosion-and Wear resistant. Various thicknesses of lining material are available.
European manufacturers have resorted to nitride barrels with less wear resistance,though some bimetallic cylinders are now manufactured there under licensing agreements. Barrel supports should be oriented to allow attachment of substantially heavy dies without barrel deflection.They should also provide a rigid connection between the frame and the transmission, and should be designed to assure barrel freedom for longitudinal expansion and contraction;such sliding contacts should be designed to minimize heat losses to the support8 proper. The machine with the least number of components requiring careful alignment in relation to the base is the one which will naturally be less likely to require field alignment either at time of installation or when work has to be done on the barrel。
The L/D ratio of an extruder is an important characteristic of the barrel design,since it determines the relative amount of inner barrel surface available for shear of mixing and heat transfer. The ratio is defined as the length of the barrel from the rear of the feed hopper to the breaker plate,divided by the nominal inside diameter of the barrel. Although extruders are available in a wide range of L/D ratios from 16:1 to 30:1,most common ratios are 20:1 and 24:1. Machines with standard ratios as high as 30:1 are also being currently produced. Present trends indicate future predominance of 24:1 and 28:1 L/D extruders.
Vented barrels should have an L/D ratio of at least 24:1 to accommodate the two stage screw used in this process. Vented machines may be valved internally or externally to control the flow rate of the polymer from the metering to the vent zone.Nonvalved systems also work satisfactorily. Three different types of vented single screw extruders are shown in Fig.7.
Barrel heating-cooling: The most poplar method Of heating the extruder barrel in the past has been with external electrical resistance heater in the form of bands or straps which are simply wrapped around the outer diameter of the steel barrel in multiple units and fastened in place.Several heaters are usually wired together to act as one unit or zone .Bank type are available in different widths, sizes, and wattages. Sufficient heating capacities should be supplied so the extruder is capable of processing the various types of resin.A watt density Of 25 to 45 watts/in is usually sufficient.
A current trend in electrical resistance heating of extruder barrels is towards so-called “cast-in-aluminum heaters.'’ This type consists of a form-fitting series of cast aluminum blocks between which the barrel is sandwiched and in Which are embedded electrical resistance heating elements,The use of the aluminum block heaters is said to provide more even heat distribution along the heating zone since the excellent thermal conductivity of the aluminum minimizes localized overheating which might occur at heater element locations. Also, cooling fins can be incorporated to aid in air-cooling the barrel.
Another commercially available type of extruder uses induction heating to heat the steel barrel. Induction heating provides high watt densities for fast, efficient use of electrical heating.
Cooling of the extrusion cylinder may be provided to carry away excess heat and to permit rapid changes in operating temperature which might be demanded when changing running conditions or controlling the temperature to a constant value.Excess heat arises from the mechanical work which is done on the material by the screw. As a matter of fact,this is the chief source of heat input to the material. The external heating system is used mainly to start up the extruder and t supply heat to maintain a constant temperature.
Cooling of the extrusion cylinder may be provided to carry away excess heat and to permit rapid changes in operating temperature which might be demanded when changing running conditions or controlling the temperature to a constant value.Excess heat arises from the mechanical work which is done on the material by the screw. As a matter of fact,this is the chief source of heat input to the material. The external heating system is used mainly to start up the extruder and t supply heat to maintain a constant temperature.
Cooling systems in popular use employ water cooling coils forced air circulation around the outside of the barrel and jacketed barrels in which a refluxing liquid is used to carry away the heat to an external cooling coil or combinations of these methods.
The most popular cooling system is a series of air blowers corresponding to the heating zones. These simply direct a blast of ambient temperature air onto the barrel itself or onto fins on the barrel or cast heaters. Although this is less efficient than water cooling,it has the advantages of avoiding thermal shock and of providing the gentle cooling desired for this operation.
In one type of jacketed barrel cooling system,a special liquid with appropriate boiling point and vapor pressure occupies a portion of the volume in the sealed jacket the balance of the volume of the jacket being filled with the liquid's vapor,the two phases being in equilibrium. When cooling is desired,cool air is blown onto a finned condenser connected to the sealed jacket. The vapor in the jacket condenses and the liquid starts to boil by heat absorbed from the cylinders.If the temperature drops too rapidly,boiling (and hence cooling) also ceases,there by providing an element of self—regulation.
Screws
Of the many extruder screw designs in common use today,the most widely used is shown in Fig.8, top.In this constant pitch, gradual transition metering screw,channel depth is greatest in the feed section and is constant until it smoothly decreases through the transition section to the constant depth of the metering section at the forward end Of the screw.Four other screw designs are shown in the lower part of Fig.8.
The screw design is considered optimum when the granules entering the screw in the feed section are fully plasticized into a homogeneous melt prior to the entry of the mass into the metering section. The melt is pumped through this latter section to the die at a uniform rate.
In the feed section,the screw channel is designed to have a conveying capacity in excess of that of the transition and metering sections. This is done to avoid starving the forward sections.
Studies of the feeding of solid granule through extruder screws have resulted in the following conclusions: 1) the maximum granule conveying rate will be achieved when the friction between the inner Wall Of the barrel and the granules is at a maximum and the friction between the granules and the screw is at a minimum,and,2) the optimum helix range of the screw depends on the friction between the plastic and the screw and barrel.in most cases this angle is in the neighborhood of 15 to 20 degrees.
The materials of construction for feed screws vary,but in most cases a 4140 alloy steel is used.With few exceptions, all modern screws are hollow bored for liquid Cooling and heating. Since there is appreciable wear between the snug fitting screw and the barrel and since some plastics compound are highly abrasive, care must be taken in the selection of fight hardening methods.Flame hardening of the fight is adequate for most extrusion processes but specific applications where wear is a problem may require coating with Stellte#6
Chrome-plating the screw is a standard procedure. Chromed screws are more corrosion resistant and it is usually easier to remove plastic material from them and to clean them.
英文翻譯
塑料擠出機(jī)設(shè)計(jì)
圖1中的彈性熔體擠出機(jī)和圖2的彈性流體擠出機(jī),都涉及到了使物料由固態(tài)變?yōu)榘胍簯B(tài),在兩個(gè)轉(zhuǎn)盤(pán)間發(fā)生剪切物料的問(wèn)題。在這兩種裝置中,物料被喂送到兩個(gè)轉(zhuǎn)盤(pán)之間的圓柱空間,而后流到盤(pán)子的中央。
彈性熔體擠出機(jī)和彈性流體擠出機(jī)均取決于物料通過(guò)擠出機(jī)的不同
狀態(tài),而物料的運(yùn)動(dòng)又取決與熔體的特性。若使出用彈性熔體擠出機(jī),熔
體必需是粘彈性體。正是這種彈性的存在才會(huì)產(chǎn)生—種驅(qū)使熔體通過(guò)的內(nèi)
壓。
相比之下,一種純粘性流體能夠從彈性流體動(dòng)力機(jī)出機(jī)中擠出,因?yàn)槟欠N擠壓力來(lái)自于旋翼的幾何外形,在這些旋翼中,物料受剪切,簡(jiǎn)而言之,那些產(chǎn)生于當(dāng)熔體通過(guò)一個(gè)很小的截面時(shí)內(nèi)壓不均。
在連續(xù)柱塞擠出機(jī)中,如圖3,由于提供一種調(diào)系統(tǒng)工程,故來(lái)自于交替的工作柱塞的交替液流匯和成一股光滑的流柱,從而保證了擠出的連續(xù)性,通過(guò)使用兩個(gè)交替運(yùn)行的預(yù)料筒,當(dāng)一個(gè)柱塞被擠壓時(shí),另外一個(gè)就
被堵住,這樣,彌補(bǔ)了傳統(tǒng)的柱塞式的不足。這種裝備將會(huì)使高效擠出機(jī)
有更大的發(fā)展,并且它不會(huì)削弱對(duì)熱塑性物料的剪切作用。
以上三種被命名的機(jī)器,彈性熔體擠出機(jī)引起了最大的關(guān)注,最初遇
到的一些問(wèn)題諸如,輸入低、止推軸承承載高,喂送物料至剪切區(qū)難等。
從某種程度上說(shuō),這些問(wèn)題逐漸得解決。第一臺(tái)被接受的經(jīng)濟(jì)模型如圖4
所示,它曾引起人們的注意,有可能把彈性熔體機(jī)當(dāng)作一種擠塑機(jī),甚至
是擠出生產(chǎn)線(xiàn)。這樣的擠出機(jī)在吹風(fēng)定型,注入模具時(shí)也被認(rèn)為是進(jìn)行擠
塑操作。
擠塑機(jī)的設(shè)計(jì)
對(duì)于所有標(biāo)準(zhǔn)化的單螺桿擠出機(jī)而言,它的組成部分如圖5所示,基本上它是由一個(gè)鋼制機(jī)筒組成,在筒內(nèi)固體或者在筒的整個(gè)長(zhǎng)度上都能運(yùn)轉(zhuǎn)的中心軸旋轉(zhuǎn)著,這根回轉(zhuǎn)軸上且有連續(xù)的旋轉(zhuǎn)槽,這樣就形成了擠出機(jī)的螺桿。
螺旋槽的長(zhǎng)度延伸到螺桿上從擠出機(jī)的加料口到螺桿前端的整個(gè)長(zhǎng)度。
當(dāng)加工螺桿上的槽時(shí),螺旋狀的凸起被稱(chēng)為螺棱,兩個(gè)螺棱之間的距離或?qū)С掏ǔ5扔诼輻U的外徑,這樣做的目的主要是考慮到加工容易,通常螺桿的外徑等于機(jī)筒的內(nèi)徑減去一個(gè)精心策劃的間隙,這個(gè)間隙能滿(mǎn)足螺桿的旋轉(zhuǎn)
擠出機(jī)的機(jī)筒或襯套都鑄成合金,并且它們都具有加熱和冷卻系統(tǒng),溫度控制系統(tǒng)的熱電偶沿著機(jī)筒等間距的布置正在其上的凹窩內(nèi),對(duì)于長(zhǎng)徑比在20:1至28:1范圍內(nèi)且機(jī)筒較長(zhǎng)的擠出機(jī)而言,通常采用四至六個(gè)控制區(qū)段。
同轉(zhuǎn)螺桿的動(dòng)力是一個(gè)變速電機(jī)通過(guò)擠出機(jī)的齒輪減速器、聯(lián)軸器、止推軸承來(lái)提供的所設(shè)計(jì)的止推軸承必需能夠承擔(dān)起作用在螺桿后面的較高的載荷,這種載荷是由螺桿前端外的壓力而產(chǎn)生。
當(dāng)顆粒經(jīng)過(guò)擠出機(jī)筒并近一步塑化后,熔體通過(guò)一個(gè)能支撐過(guò)濾網(wǎng)的分流板被擠壓,它的作用在于:(1)確保內(nèi)容物不直接流向口模;(2)產(chǎn)生一種被壓以穩(wěn)定通過(guò)擠出機(jī)的物料流。在新的擠出機(jī)中,在控制熔體壓力和取代分流板過(guò)濾網(wǎng)或者是調(diào)節(jié)閥后它將流近口模,在其上面有通向開(kāi)口的通道。
擠出機(jī)尺寸
單螺桿擠出機(jī)的尺寸受筒內(nèi)徑的限制,通常,許多的標(biāo)準(zhǔn)尺寸系列為:1.5、2、2.5、3.25、3.5、4.5、6、8英寸,如尺寸大于8英寸,將按特例考慮。
如圖6所示,隨著塑料擠出機(jī)尺寸變化的平均輸出功率與螺桿尺寸息息相關(guān),這為我們?cè)O(shè)計(jì)提供了方向。實(shí)際的輸出值除于設(shè)備有關(guān)外,很大程度上取決與運(yùn)動(dòng)物料,也就是說(shuō),驅(qū)動(dòng)機(jī)器、螺桿設(shè)計(jì)都很重要。
機(jī)筒
美式擠出機(jī)工業(yè)已經(jīng)將擠出筒標(biāo)準(zhǔn)化,為壓力達(dá)到目的10000帕,機(jī)內(nèi)鑄以特殊合金套。為了達(dá)到更高的壓力,具有合金套的鋼管壓縮裝配到一個(gè)更大的機(jī)筒內(nèi)。設(shè)計(jì)的可更換的襯套有很好的耐磨性和抗磨性,度層材料的厚度允許有變化。
盡管一些可變化筒目前在特殊條件下能制造出來(lái),歐洲的制造商仍把注意力投向抗磨性差的氮化機(jī)筒。機(jī)筒的支架應(yīng)確認(rèn)可使用很重的口模帶有附件,這是在機(jī)筒無(wú)偏斜的條件下來(lái)看的。在支架與傳動(dòng)系統(tǒng)之間還應(yīng)提供一種剛性接觸,已確保機(jī)筒在長(zhǎng)度方向上有膨脹和收縮的余地?;瑒?dòng)連接設(shè)計(jì)應(yīng)使支架上的組成的機(jī)不需要器人熱量損失最小。這樣的機(jī)器是由經(jīng)過(guò)細(xì)心排成直線(xiàn)的幾個(gè)為數(shù)不過(guò)的構(gòu)件組成的一種機(jī)器。實(shí)際上,無(wú)論機(jī)筒是在工作還是不在工作的時(shí)候,它都不需要排成直線(xiàn)的空間。
一個(gè)擠出機(jī)的長(zhǎng)徑比是機(jī)筒設(shè)計(jì)的一個(gè)重要的參數(shù),因?yàn)樗鼪Q定了機(jī)筒內(nèi)表面的剪切、混合和熱傳遞的能力,它的值定義為在機(jī)筒上從前面的加料口到分流板之間的長(zhǎng)度除以機(jī)筒的內(nèi)徑。
擠出機(jī)有一個(gè)從表面上看16:1到30:1較寬的范圍,但最普通的長(zhǎng)徑比是20:1和24:1。象長(zhǎng)徑比高達(dá)30:1的標(biāo)準(zhǔn)長(zhǎng)徑比的機(jī)器即將產(chǎn)生出來(lái),目前的趨勢(shì)表明長(zhǎng)徑比為24:1和28:1的擠出機(jī)會(huì)成為將來(lái)的主流。
為了適應(yīng)生產(chǎn)過(guò)程中的二階螺桿,排氣式機(jī)筒的長(zhǎng)徑比至少為24:1,為了控制從計(jì)量段到排氣段聚合物的流率,排氣式擠出機(jī)應(yīng)有內(nèi)外調(diào)節(jié)系統(tǒng)。無(wú)排氣系統(tǒng)也可達(dá)到到正常的效果。圖7所示為三種不同的排氣式單螺桿擠出機(jī)。
機(jī)筒的加熱和冷卻:在過(guò)去擠出機(jī)機(jī)筒最普遍的加工方法是使用圈狀或帶狀的電阻加熱器,它們纏繞在機(jī)筒的外徑上并緊固在其上。許多加熱器通常捆在一起作為一個(gè)整體或單元,提狀類(lèi)型的加熱器可以有不同的寬度、尺寸以及瓦特。這樣的擠出機(jī)應(yīng)供應(yīng)給充足的熱能量,以加工不同類(lèi)型的樹(shù)脂,每分鐘有24至25瓦特的瓦特密度通常是充足的。
目前的趨勢(shì)是機(jī)筒上的加熱器將面臨所謂的鑄鋁加熱器的挑戰(zhàn)。這種加熱器主要是由一系列的鑄鋁組成,在這些鑄鋁塊中插入機(jī)筒并在其中嵌入了電阻加熱元件,沿著加熱段,鑄鋁加熱器可以使熱量分布均勻。由于鋁的良好的傳導(dǎo)性,它可以使發(fā)生在加熱器元件處的局部過(guò)熱傾向減少為最小,同時(shí),冷卻元件也可能與元件放在一起從而達(dá)到空冷機(jī)筒的目的。
另外一種較經(jīng)濟(jì)的擠出機(jī)采用電感應(yīng)加熱器來(lái)加熱,機(jī)筒電感應(yīng)加熱可以供給高的瓦特密度以實(shí)現(xiàn)高效的電感應(yīng)加熱。
擠出機(jī)的冷卻系統(tǒng)應(yīng)該能散發(fā)多余的熱量,并且允許在工作溫度下較快的變化,當(dāng)改變運(yùn)行狀態(tài)或?qū)囟瓤刂圃谝粋€(gè)常值時(shí),哪個(gè)工作溫度上許可的。多余的熱量產(chǎn)生于螺桿作用在物料上的機(jī)械加工中,實(shí)際上這是熱量產(chǎn)生的主要來(lái)源。外部的加熱系統(tǒng)主要用來(lái)起動(dòng)擠出機(jī)以及供給熱量以維持一個(gè)常溫。常用的冷卻系統(tǒng)是采用水管冷卻和水套冷卻,水管冷卻使機(jī)筒外側(cè)的空氣與之對(duì)流;對(duì)水套冷卻而言,回流的液體就可以將熱量帶到外面,冷卻水管中或者類(lèi)似于這些方法的物體中。
最受歡迎的冷卻系統(tǒng)是由對(duì)著加熱段的鼓風(fēng)機(jī),這些鼓風(fēng)機(jī)可以把周?chē)囊还晒蔁峥諝獯迪驒C(jī)筒或者機(jī)筒的散熱片上或者鑄鋁加熱器。盡管風(fēng)冷不如水冷效果好,但它具有避免冷擊和冷卻柔和的優(yōu)勢(shì)。
在有襯套的機(jī)筒的冷卻系統(tǒng)中,有適當(dāng)?shù)姆悬c(diǎn)和氣壓的一種特殊氣體占據(jù)了密封的一部分容積,充滿(mǎn)那種液體蒸汽的襯套有兩個(gè)平衡段。當(dāng)需要空冷時(shí),冷空氣就吹向一個(gè)與密封套相聯(lián)的葉片冷凝器,這時(shí)襯套中的蒸汽就被冷卻,而當(dāng)它吸收了來(lái)自機(jī)筒的熱量后就會(huì)沸騰,如果溫度下降的太快,沸騰就會(huì)停止,所以應(yīng)供給一個(gè)自動(dòng)調(diào)節(jié)元件。
螺桿
在今天的日常使用中,在眾多的擠出機(jī)螺桿設(shè)計(jì)中,使用最廣泛的螺桿如圖8所示,對(duì)這種等距漸變的計(jì)量螺桿而言,在加料段的槽深最大并且是個(gè)常值;而在熔融段槽深自然的減小,而在均化段槽深又保持不變。在圖8的下面,給出了四種不同的螺桿設(shè)計(jì)方案。
當(dāng)進(jìn)入螺桿加料段的顆粒在進(jìn)入均化段之前被塑化成一種均勻的熔體時(shí),螺桿的設(shè)計(jì)要合理化,后來(lái)熔體以恒定的速率被推向與口模相連的計(jì)量段。
從擠出機(jī)螺桿的固體顆粒喂進(jìn)的研究可以得到如下的結(jié)論:(1)當(dāng)機(jī)筒內(nèi)壁與顆粒之間的摩擦達(dá)到最大,而顆粒與螺桿之間的摩擦處于最小值時(shí),將會(huì)得到最大的固體傳送率,(2)螺桿上合理的螺桿角取決于塑料與螺桿和機(jī)筒之間的摩擦,在大多數(shù)情況下,螺旋角的取值在15至20度之間。
對(duì)喂進(jìn)作用的螺桿而言,它的制造材料有多種,但大多數(shù)采用一種4140的合金。除了少數(shù)的例子外,所有的現(xiàn)代螺桿都被鉆成空的,用于液體的冷卻和加熱。由于在布置恰當(dāng)?shù)穆輻U與機(jī)筒之間存在著磨損,而且一些聚合物有很高的腐蝕性,因此對(duì)螺棱淬火方法的選擇要倍加小心。對(duì)大多數(shù)擠出機(jī)而言,螺棱的淬火足以達(dá)到要求,但是磨損是一個(gè)主要的問(wèn)題,因此要求螺棱的表面要鍍Stellite#6.
烙化螺桿是一個(gè)標(biāo)準(zhǔn)化的過(guò)程。經(jīng)烙化的螺桿有很強(qiáng)的抗腐蝕性,通常它可以輕而易舉地將塑化物質(zhì)從它上面移開(kāi),并且可以清潔自身。
收藏
編號(hào):21137253
類(lèi)型:共享資源
大?。?span id="mzebxcnn0" class="font-tahoma">2.18MB
格式:ZIP
上傳時(shí)間:2021-04-24
40
積分
- 關(guān) 鍵 詞:
-
SJ90單螺桿擠出機(jī)結(jié)構(gòu)設(shè)計(jì)
sj90
螺桿
擠出機(jī)
結(jié)構(gòu)設(shè)計(jì)
- 資源描述:
-
SJ90單螺桿擠出機(jī)結(jié)構(gòu)設(shè)計(jì),SJ90單螺桿擠出機(jī)結(jié)構(gòu)設(shè)計(jì),sj90,螺桿,擠出機(jī),結(jié)構(gòu)設(shè)計(jì)
展開(kāi)閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶(hù)自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶(hù)書(shū)面授權(quán),請(qǐng)勿作他用。