礦物及固體絕緣材料電阻率測量的小型電極【中文6350字】【PDF+中文WORD】
礦物及固體絕緣材料電阻率測量的小型電極【中文6350字】【PDF+中文WORD】,中文6350字,PDF+中文WORD,礦物,固體,絕緣材料,電阻率,測量,小型,電極,中文,6350,PDF,WORD
中國科學: 技術科學 2011 年第 41 卷第 7 期: 890 -895
【中文6350字】
礦物及固體絕緣材料電阻率測量的小型電極實驗裝置與應用
汪靈①②*, 羅柯①, 李自強①, 關淞云①, 葛偉①, 張浚源①
成都理工大學材料與化學化工學院, 成都 610059,中國; 成都理工大學金剛石薄膜實驗室, 成都 610059,中國
收稿日期: 2010-10-20; 接受日期: 2011-01-07;在線發(fā)布日期:2011-02-03
目前還沒有一種礦物及固體絕緣材料小塊樣品電阻率測量的有效方法。為此,根據(jù)國家標準GB/T1410-2006 和數(shù)字高阻計特點,研制了一種與通用高阻計配套使用的小型電極實驗裝置, 將試樣直徑由標準電極的100 mm 減小到18 mm,試樣面積減少了30.86 倍;該裝置采用2個直徑60 mm×高20 mm的絕緣基座對三電極系統(tǒng)進行支撐和精確定位,以實現(xiàn)裝置結(jié)構(gòu)的精準性和測量結(jié)果的可靠性,其關鍵技術參數(shù)是高壓電極和測量電極的直徑分別為18 和14.6 mm,保護電極內(nèi)徑和外徑分別為16和18 mm,保護電極與測量電極間隙尺寸為0.6 mm,適用于直徑φ=18 mm的礦物及固體絕緣材料平板試樣電阻率測量;體積電阻率和表面電阻率驗證實驗結(jié)果表明,采用小型電極實驗裝置與標準電極測量結(jié)果一致。
1、 前言
電阻率是表征材料電學性能的重要參數(shù)[1, 2],其常用測量方法是四探針法和三電極法[3]四探針法主要用于半導體和導體材料電阻率的測量,例如:王亞平等人[4]以四探針法為基礎,發(fā)展了一種高精度四線交流電阻測試設備,能夠原位監(jiān)測Ni80P20, FeZr2 和Fe86B14 非晶合金的晶化動力學過程。李冠雄等人[5]采用高真空電子束蒸發(fā)方法制備半導體材料Si為過渡層的Co/Cu/Co 三明治膜過程中,利用四探針法研究了三明治膜的巨磁電阻效應及磁各向異性與Si過渡層的關系。周西松等人[6]利用四探針法研究了Sn(Pb)Te-Bi2Te3系熱電材料的電導率隨溫度的變化規(guī)律,結(jié)果表明常溫下樣品的電導率最大, 之后隨溫度升高明顯降低。Ozols等人[7]使用四探針法研究了在不同聚合物含量和有無鐵鎳合金粉末涂層的條件下軟磁化合物的電阻率。Tang 等人[8]利用四探針法研究了La1?xSrxMnO3 系列混合物在不同溫度下的電阻曲線。而三電極法則主要用于絕緣材料電阻率的測量, 例如: Vila 等人[9]采用三電極法研究了電子照射對聚乙烯與聚酰亞胺膠帶體積電阻的影響。Gonon等人[10]使用三電極系統(tǒng)研究了環(huán)氧復合材料電阻率隨含水量的變化趨勢。絕緣材料是指當電壓施加在材料兩點之間或其內(nèi)部時, 只產(chǎn)生極小甚至可以忽略不計的微弱電流[11]。 目前,絕緣材料電阻率測量方法(三電極法)已有相應的美國標準ASTM D 257-1999[12]和國家標準GB/T1410-2006(與國標IEC60093-1980 等效)[13]。其方法是:將樣品加工成直徑為=100 mm 左右、厚h=1~3 mm的標準尺寸,然后利用高阻計進行測量。非金屬礦物通常具有優(yōu)良的絕緣性能,但是,由于樣品加工困難等原因,目前還沒有一種測量礦物電阻率的有效方法,難以對非金屬礦物絕緣性能進行表征和研究。其主要原因是:許多礦物的解理發(fā)育,或本身存在裂紋與缺陷,在加工過程中容易開裂,難以獲得如此大的標準尺寸樣品。另外,對于其他固體絕緣材料,在一些情況下要加工或獲取標準尺寸的樣品也是非常困難的。
近年來,非金屬礦物因其優(yōu)良的電氣性能和低廉的價格被越來越多的應用于絕緣材料中,例如:2005年我國的礦物填料在塑料和橡膠中的用量已分別達到375×104 和120×104 t,成為我國礦物材料產(chǎn)業(yè)的重要組成部分[14]。因此,研究一種適用于礦物及固體絕緣材料小塊樣品電阻率測量的實驗裝置和方法,不僅對礦物絕緣性能的表征和研究具有不可替代的作用,而且由于實驗樣品尺寸的大幅減少,將使礦物粉體及其他粉體材料電阻率測量成為可能,這對于礦物資源開發(fā)利用以及新型絕緣材料研究與應用都具有十分重要的意義。
本工作根據(jù)中國的標準GB/T1410-2006 和數(shù)字高阻計特點,研制出一種適用于礦物及固體絕緣材料小塊樣品(直徑φ=18 mm)電阻率測量的小型電極實驗裝置,并與通用高阻計配套使用,對一些非金屬礦物及固體絕緣材料的體積電阻率和表面電阻率進行較系統(tǒng)測量, 通過與標準電極(樣品直徑φ=100 mm)測試結(jié)果以及這些材料已知數(shù)據(jù)進行比較分析,獲得了一致的結(jié)果。
2、 固體絕緣材料電阻率測量原理
根據(jù)國家標準GB/T1410-2006, 固體絕緣材料體積電阻和表面電阻率采用高阻儀表進行測量。高阻儀表由數(shù)據(jù)測量系統(tǒng)、三電極系統(tǒng)和金屬屏蔽箱組成。試樣直徑大小由測量電極、保護電極和高壓電極所組成的三電極系統(tǒng)尺寸大小共同決定。圖1是適用于直徑φ=100 mm 固體絕緣材料電阻率測量的三電極系統(tǒng)工作原理示意圖,為了消除外來電磁干擾所產(chǎn)生的影響,三電極系統(tǒng)應放置于金屬屏蔽箱中, 其測量原理如下。
測量體積電阻時(圖1(a)), 測量電極1-1#通過導線1-2#與高阻儀表的測量端相連,高壓電極3-1#通過導線3-2#與高阻儀表的高壓端相連,保護電極2-1#則通過導線2-2#與高阻儀表的接地端相連,電流按圖1(a)箭頭所示方向穿過測試樣品,被測樣品0#的體積電阻(Rv)由高阻儀表可直接讀取。
圖1 適用于直徑=100 mm 固體絕緣材料電阻率測量的三電極系統(tǒng)工作原理示意圖
0#-試樣; 1-1#-測量電極; 2-1#-保護電極; 3-1#-高壓電極; 1-2#, 2-2#, 3-2#-導線(a) 體積電阻測量原理; (b) 表面電阻測量原理
根據(jù)體積電阻(Rv)測試結(jié)果和國家標準GB/T1410-2006 計算公式如下, 可得到被測樣品的體積電阻率(ρv)
ρv= RvAeh (1)
式中,v 為體積電阻率(Ω·cm);h為樣品厚度(cm) ;Rv為體積電阻(Ω), 由高阻計直接測試得到;Ae為被保護電極的有效面積,由電極尺寸決定,其計算公式為:
Ae=ππd1+g24 (2)
式中, d1 為測量電極(圖1,1-1#)直徑(cm),g為測量電極與保護電極的間隙(cm), πp=3.1416。對于直徑φ=100 mm 的標準電極, Ae=21.237 cm2;對于直徑φ=18mm 自制小型電極, Ae=1.863 cm2。
測量表面電阻率時(圖1(b)),測量電極1-1#通過導線1-2#與高阻儀表的測量端相連,保護電極 2-1#通過導線2-2#與高阻儀表的高壓端相連,高壓電極 3-1#則通過導線3-2#與高阻儀表的接地端相連, 電流按圖1(b)箭頭所示方向從測試樣品表面通過, 被測樣品0#的表面電阻率(ρs)由高阻儀表根據(jù)表面電阻(Rs)測量數(shù)據(jù),經(jīng)如下公式自動換算得到[15]。
ρs=Rs2πl(wèi)nd2d1 (3)
式中,ρs 為表面電阻率; Rs 為表面電阻(Ω);d1 為測量電極直徑(cm);d2 為保護電極(圖1, 2-1#)內(nèi)徑(cm)。
3 、 小型電極實驗裝置的研制
圖2是一種適用于直徑φ=18 mm 礦物及固體絕緣材料電阻率測量的小型電極實驗裝置結(jié)構(gòu)圖,其測量原理與標準電極系統(tǒng)(圖1) 完全相同。由于該裝置的三電極尺寸較小,其研制的關鍵是三電極尺寸大小等重要技術參數(shù)確定及其精確定位。
3.1 小型電極系統(tǒng)的關鍵技術參數(shù)
三電極系統(tǒng)是整個裝置的核心,如圖2 所示,其技術關鍵是保護電極的內(nèi)外徑、測量電極的直徑以及保護電極與測量電極之間的間隙尺寸大小等關鍵技術參數(shù)的確定。
(i)保護電極的內(nèi)外徑尺寸。樣品直徑的大小直接決定三電極的尺寸大小。樣品直徑過小, 三電極尺寸將相應減小, 并導致保護電極與測量電極之間的間隙尺寸g 過小,從而影響整個裝置的使用安全性;相反, 若樣品尺寸過大,又使得實驗裝置失去其小型化意義。經(jīng)過多次試驗,最終確定樣品直徑φ=18 mm,其面積為254.34 mm2。而φ=100 mm 的標準樣品, 其面積為7850 mm2,與之相比,小型電極樣品面積減少了30.86 倍,使礦物及固體絕緣材料小塊樣品電阻率測量成為可能。
在絕緣電阻測量時,為了抵消表面或體積效應引起的誤差, 保護電極2-1#外徑d3和高壓電極3-1#直徑d4應與樣品0#直徑d0相同, 即d3=d4= d0=18 mm。另外,由于電極尺寸較小,如果保護電極2-1#厚度過大, 將導致與高壓電極3-1#之間隙尺寸過小而降低系統(tǒng)的安全性,并將大大增大加工難度。因此,綜合各方面因素,保護電極2-1#的最小厚度為1 mm,則保護電極2-1#內(nèi)徑d2=16 mm。
(ii) 測量電極直徑尺寸。由公式(3)可知, d2/d1 為定值, 表面電阻率與d2/d1 比值有關, 而與試樣大小無關, 因此,可由高阻計直接讀取. 由于標準電極d2/d1=54 cm/50 cm=1.08, 此常數(shù)不可更改, 那么小型電極d2/d1 也應等于1.08。由于小型電極的保護電極2-1#內(nèi)徑d2=16 mm,那么可確定測量電極1-1#直徑d1 = 16 mm/1.08=14.8 mm。
(iii) 保護電極與測量電極之間的間隙尺寸。由于保護電極2-1#內(nèi)徑d2=16 mm,測量電極1-1#直徑d1=14.8 mm,并由于二者之間的間隙距離g= d2-d1/2,那么,可確定間隙尺寸 g=(16 mm-14.8 mm) / 2 =0.6 mm
需要說明的是,由于高阻計最高工作電壓通常為1 kV,而空氣的直流擊穿強度為33 kV/mm[16],在最高工作電壓下,臨界擊穿間歇g=1 kV/(33 kV/mm)≈0.03 mm。也就是說,一般情況下,只要間歇尺寸g> 0.03 mm, 就能保證不被擊穿。但是,在使用過程中,由于樣品表面雜質(zhì)和空氣中懸浮顆??赡苈淙腴g隙中,如果g 過小,就容易被擊穿, 難以保證設備安全. 由于該裝置g=0.6 mm,大于臨界擊穿間歇近20 倍, 能夠保證電極系統(tǒng)的安全使用。
圖2 適用于直徑=18 mm 礦物及固體絕緣材料電阻率測量的小型電極實驗裝置結(jié)構(gòu)圖
0#, d0-測試樣品及其直徑; 1-1#, d1-測量電極及其直徑; 2-1#, d2 , d3-保護電極及其內(nèi)外徑; 3-1#, d4-高壓電極及其直徑;2-2#, 3-2#-可調(diào)導體螺桿; 5-1#-上絕緣基座; 5-2#-下絕緣基座; 6-1#-不銹鋼固定螺栓; M4, M6-螺桿螺紋直徑; 其余數(shù)字為相關零件的尺寸大小(單位: mm)
3.2 小型電極系統(tǒng)的精確定位
如圖2 所示,該裝置采用直徑60 mm×高20 mm的上絕緣基座5-1#和下絕緣基座5-2#對三電極系統(tǒng)進行支撐和精確定位, 以實現(xiàn)裝置結(jié)構(gòu)的精準性和測量結(jié)果的可靠性。因為, 保護電極2-1#與測量電極1-1#的間隙距離只有0.6 mm, 如果三電極系統(tǒng)不能精確定位, 將難以獲得可靠測量數(shù)據(jù), 并容易出現(xiàn)短路, 使儀器遭到破壞. 為了便于測量, 保護電極2-1#和高壓電極3-1#分別通過導體螺桿2-2#和3-2#與高阻計測量系統(tǒng)實現(xiàn)聯(lián)接, 而測量電極1-1#則通過適當加長與測量端口相連。
同時,為了便于樣品精確放置在固定位置, 保護電極2-1#和測量電極1-1#相對基座5-1#向下伸出1mm,而高壓電極3-1#相對基座5-2#向內(nèi)凹陷1 mm,從而形成φ=18.5 mm×1 mm樣品放置凹槽。
另外, 為了使高壓電極3-1#與測量電極1-1#吻合,采用不銹鋼固定螺栓6-1#將基座5-1#和5-2#進行固定和精確定位;為了便于樣品安放和取出方便,使基座5-1#能夠相對于基座5-2#沿Z 軸和XY 平面內(nèi)360°活動和轉(zhuǎn)動。
3.3 小型電極實驗裝置的材料選擇
如圖2 所示,小型電極實驗裝置材料主要包括電極材料和絕緣基座材料。
(i) 電極材料。電極材料應選取能與試樣緊密接觸的材料,而且不會因施加外電極引進雜質(zhì)而造成測量誤差,還要保證測量使用的方便、安全等。常用的電極材料有退火鋁箔、噴鍍金屬層、導電粉末、燒銀、導電橡膠、黃銅和水銀電極等[15]。而從小型電極實驗裝置的結(jié)構(gòu)特點來看不僅要求電極和導體螺桿有較高的導電性能,而且要有足夠的機械強度以便于實際加工和與固定基座相配合, 另外考慮價格、使用難易程度、重復使用性后決定選用固體導電金屬作為電極材料, 可選用的材料有: 紫銅、銀銅、不銹鋼等。
本實例選用紫銅作為電極和導體螺桿材料,因為紫銅具有良好的導電性能(20℃時,電阻率僅為1.69×10-2Ω.mm2m),并具有一定的機械強度和良好的耐腐蝕性, 易于焊接、加工等優(yōu)點[16]。
(ii) 絕緣基座材料: 由于PC68高阻計所測的絕緣電阻極高, 最高可達1×1017Ω, 根據(jù)公式(1)和(2)換算成h=3 mm 的絕緣材料的體積電阻率最高可達7.08×1018Ω.cm, 和表面電阻率最高可達1×1017。如果固定基座絕緣電阻率相對較小會對測試結(jié)果產(chǎn)生較大的誤差. 因此,固定基座首先要求有極高的電阻率(ρv >1017Ω.cm),以避免對測試結(jié)果產(chǎn)生較大的影響;同時,要求材料有較強的機械強度,以起支撐固定作用。據(jù)此,可選用的材料有聚四氟乙烯(F-4)、四氟乙烯和乙烯共聚物(F-40)、聚三氟氯乙烯(F-3)等。
本實例選用聚四氟乙烯(F-4)作為絕緣基座,其分子式為[17] —( CF2-CF2)— n, 化學穩(wěn)定性較好,長期工作溫度 250℃,分解溫度為 415℃,電氣性能優(yōu)良(體積電阻率ρv >1017Ω.cm), 相對介電常數(shù)(εγ=2.0)和介質(zhì)損耗角正切(tgσ<2×10-4)在已知固體絕緣材料中是最低的, 機械強度也較高(抗張強度s =1370~3000 N/cm2)[16]。
4 驗證實驗
4.1實驗樣品與加工
實驗樣品有兩類,一類是固體非金屬礦物,主要有: 微晶白云母,四川鑫炬礦業(yè)資源開發(fā)股份有限公司生產(chǎn);白云母片,四川丹巴云母廠提供。另一類是固體絕緣材料,主要有: 800目微晶白云母絕緣灌注膠片,本課題組研制;環(huán)氧酚醛玻璃布板(3240),四川東方絕緣材料股份有限公司生產(chǎn);硅橡膠,四川東方絕緣材料股份有限公司生產(chǎn);金云母軟板,成都興東方電工材料研究有限公司生產(chǎn),醇酸柔軟云母板(5131B),成都興東方電工材料研究有限公司生產(chǎn);舒氏PVC 電氣膠帶, 舒氏集團生產(chǎn)。
將同一樣品分別加工成直徑φ=100 mm和φ=18mm,厚度h=0.3~3 mm 的圓片。但舒氏PVC 電氣膠帶除外,其制備方法是: 將膠帶剪成數(shù)條使其呈米字型層層緊密平鋪, 直至平鋪成邊長 a>100 mm, 厚h=3 mm 的正方板, 然后分別剪成直徑φ=100 mm和φ=18 mm 圓片。另外,由于體積電阻和表面電阻對材料表面污穢和水膜等比較敏感, 需進行清潔與烘干處理,其方法是:用沾有無水乙醇的脫脂棉擦拭每個樣品表面,然后用蒸餾水沖洗,再將清洗后的樣品放入電熱恒溫鼓風干燥箱中,在控溫110℃的條件下烘干24 h,取出后分別裝入密封袋中待測。
4.2電阻率的測試方法
采用上海精密科學儀器有限公司生產(chǎn)的PC68 型數(shù)字高阻計(工作電壓220 V,電壓誤差±3%,測量范圍1×103~1×1017 ), 并分別使用標準電極和小型電極對標準樣品和小塊樣品的體積電阻和表面電阻率進行測試分析。測試條件: 溫度 t=15℃,對濕度 RH=62%, 施加電壓U=500 V。所有測量均重復三次,分別取其平均值作為最終結(jié)果。
4.3測量結(jié)果與分析
表1和2是礦物及固體絕緣材料標準樣品與小塊樣品體積電阻率(Ω.cm)和表面電阻率(Ω)測量結(jié)果??梢钥闯?采用標準電極對φ=100 mm 標準樣品測試結(jié)果與同一樣品的已知的標準值基本相同, 說明該儀器的測試結(jié)果符合測量要求;同時,與采用小型電極對φ=18 mm 的小塊樣品的測量結(jié)果也基本相同,說明小型電極也能夠比較準確地測量礦物及其他固體絕緣材料小塊樣品的電阻率。需要說明的是,表1和2中測試結(jié)果并不是絕對相同,其原因是電阻率測試結(jié)果還與測試溫度、濕度、樣品烘干時間等因素有關,而且儀器誤差和各個材料的不均勻性等對測試結(jié)果也有一定的影響??偟膩砜? 其測試數(shù)據(jù)變化在儀器的正常誤差范圍之內(nèi)。以上結(jié)果說明,采用小型電極實驗裝置測量電阻率是有效的,適用于直徑φ=18 mm 礦物及固體絕緣材料小塊樣品體積電阻率和表面電阻率的測量。
5 結(jié)論
(ⅰ) 研制了一種能夠與通用高阻計配套使用, 適用于礦物及固體絕緣材料小塊樣品電阻率測量的小型電極實驗裝置,將試樣直徑由標準電極的100 mm 減小到18 mm,樣品面積減少了30.86 倍。
(ⅱ) 該裝置采用2個直徑60 mm×高20 mm 的絕緣基座對對測量電極、保護電極、高壓電極所組成的三電極系統(tǒng)進行支撐和精確定位, 以實現(xiàn)裝置結(jié)構(gòu)的精準性和測量結(jié)果的可靠性,其關鍵技術參數(shù)是高壓電極和測量電極直徑分別為18 和14.6 mm,保護電極內(nèi)徑和外徑分別為16 和18 mm,保護電極與測量電極間隙尺寸為0.6 mm。
(ⅲ) 驗證實驗結(jié)果表明,小型電極實驗裝置與通用高阻計配套使用, 能夠?qū)χ睆溅?18 mm礦物及固體絕緣材料平板試樣的體積電阻率和表面電阻率進行測量, 其結(jié)果與采用標準電極測量結(jié)果一致。
表1 礦物及固體絕緣材料標準樣品與小塊樣品體積電阻率(Ω.cm)測量結(jié)果
表2 礦物及固體絕緣材料標準樣品與小塊樣品的表面電阻率(Ω.cm)測量結(jié)果
參考文獻
1 劉其昶. 電氣絕緣結(jié)構(gòu)設計原理-中冊-絕緣結(jié)構(gòu)總論. 北京: 機械工業(yè)出版社, 1988. 137
2 邱成軍, 王元化, 王義杰. 材料物理性能. 哈爾濱: 哈爾濱工業(yè)大學出版社, 2003. 47–116
3 關振鐸, 張?zhí)? 焦金生. 無機材料物理性能. 北京: 清華大學出版社, 1992. 207–212
4 王亞平, 盧柯. 非晶態(tài)合金晶化過程的高精度電阻監(jiān)測研究. 中國科學E 輯: 技術科學, 2000, 20: 193–199
5 李冠雄, 沈鴻烈, 沈勤我, 等. Si 過渡層對Co/Cu/Co 三明治膜巨磁電阻效應的影響. 中國科學E 輯: 技術科學, 2000, 30: 15–21
6 周西松, 鄧元, 韋國丹, 等. 溶劑熱法合成系熱電材料Sn(Pb)Te-Bi2Te3系熱電材料及其性能研究. 中國科學E輯: 技術科學, 2003, 33: 217–221
7 Ozols A, Pagnola M, García D I, et al. Electroless coating of Permalloy powder and DC-resistivity of alloy composites. Surf Coat Tech,2006, 200: 6821–6825
8 Tang G C, Yu Y, Chen W, et al. The electrical resistivity and thermal infrared properties of La1?xSrxMnO3 compounds. J Alloy Compd, 2008,461: 486–489
9 Vila F, Sessler G M, Sykj H. The influence of electron-beam irradiation on the volume resistivity of polyethylene and kapton. J Electrostat,2005, 63: 749–754
10 Gonon P, Hong T P, Lesaint O, et al. Influence of high levels of water absorption on the resistivity and dielectric permittivity of epoxy composites. Polym Test, 2005, 24: 799–804
11 ASTM D 1711-2002. Standard Terminology Relating to Electrical Insulation. American Society for Testing and Materials, Philadelphia,2002
12 ASTM D 257-1999. Standard Test Methods for DC Resistance or Conductance of Insulating Materials. American Society for Testing andMaterials, Philadelphia, 1999
13 GB/T 1410-2006, 固體絕緣材料體積電阻率和表面電阻率試驗方法. 中國國家標準化管理委員會, 北京, 2006
14 袁繼祖. 非金屬礦物填料與加工技術. 北京: 化學工業(yè)出版社, 2006. 8
15 伍洪標. 無機非金屬材料實驗. 北京: 化學工業(yè)出版社, 2002. 341–343
16 李正吾. 新電工手冊. 合肥: 安徽科技出版社, 2000. 1794–1885
17 廣州電器研究所上海試驗站譯. 電工材料手冊. 北京: 中國工業(yè)出版社, 1963. 76
18 礦產(chǎn)資源綜合利用編委會. 礦產(chǎn)資源綜合利用手冊. 北京: 科學出版社, 2000. 599
19 趙燕玲. 微晶白云母在絕緣灌注膠功能復合材料中的應用基礎研究. 碩士學位論文. 成都: 成都理工大學, 2007. 37
收藏