(江蘇專用)高考數(shù)學(xué)二輪復(fù)習(xí) 回扣1 函數(shù)的圖象與性質(zhì)試題 理-人教版高三數(shù)學(xué)試題
《(江蘇專用)高考數(shù)學(xué)二輪復(fù)習(xí) 回扣1 函數(shù)的圖象與性質(zhì)試題 理-人教版高三數(shù)學(xué)試題》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)高考數(shù)學(xué)二輪復(fù)習(xí) 回扣1 函數(shù)的圖象與性質(zhì)試題 理-人教版高三數(shù)學(xué)試題(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、回扣1 函數(shù)的圖象與性質(zhì) 1.函數(shù)的定義域和值域 (1)求函數(shù)定義域的類型和相應(yīng)方法 ①若已知函數(shù)的解析式,則函數(shù)的定義域是使解析式有意義的自變量的取值范圍; ②若已知f(x)的定義域?yàn)閇a,b],則f(g(x))的定義域?yàn)椴坏仁絘≤g(x)≤b的解集;反之,已知f(g(x))的定義域?yàn)閇a,b],則f(x)的定義域?yàn)楹瘮?shù)y=g(x)(x∈[a,b])的值域. (2)常見函數(shù)的值域 ①一次函數(shù)y=kx+b(k≠0)的值域?yàn)镽; ②二次函數(shù)y=ax2+bx+c(a≠0):當(dāng)a>0時(shí),值域?yàn)椋?dāng)a<0時(shí),值域?yàn)椋? ③反比例函數(shù)y=(k≠0)的值域?yàn)閧y∈R|y≠0}. 2.函
2、數(shù)的奇偶性、周期性 (1)奇偶性是函數(shù)在其定義域上的整體性質(zhì),對(duì)于定義域內(nèi)的任意x(定義域關(guān)于原點(diǎn)對(duì)稱),都有f(-x)=-f(x)成立,則f(x)為奇函數(shù)(都有f(-x)=f(x)成立,則f(x)為偶函數(shù)). (2)周期性是函數(shù)在其定義域上的整體性質(zhì),一般地,對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)的任意一個(gè)x的值,若f(x+T)=f(x)(T≠0),則f(x)是周期函數(shù),T是它的一個(gè)周期. 3.關(guān)于函數(shù)周期性、對(duì)稱性的結(jié)論 (1)函數(shù)的周期性 ①若函數(shù)f(x)滿足f(x+a)=f(x-a),則f(x)是周期函數(shù),2a是它的一個(gè)周期; ②設(shè)f(x)是R上的偶函數(shù),且圖象關(guān)于直線x=a(
3、a≠0)對(duì)稱,則f(x)是周期函數(shù),2a是它的一個(gè)周期; ③設(shè)f(x)是R上的奇函數(shù),且圖象關(guān)于直線x=a(a≠0)對(duì)稱,則f(x)是周期函數(shù),4a是它的一個(gè)周期. (2)函數(shù)圖象的對(duì)稱性 ①若函數(shù)y=f(x)滿足f(a+x)=f(a-x), 即f(x)=f(2a-x), 則f(x)的圖象關(guān)于直線x=a對(duì)稱; ②若函數(shù)y=f(x)滿足f(a+x)=-f(a-x), 即f(x)=-f(2a-x), 則f(x)的圖象關(guān)于點(diǎn)(a,0)對(duì)稱; ③若函數(shù)y=f(x)滿足f(a+x)=f(b-x), 則函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱. 4.函數(shù)的單調(diào)性 函數(shù)的單調(diào)性是函數(shù)在其定
4、義域上的局部性質(zhì). ①單調(diào)性的定義的等價(jià)形式:設(shè)x1,x2∈[a,b], 那么(x1-x2)[f(x1)-f(x2)]>0?>0?f(x)在[a,b]上是增函數(shù); (x1-x2)[f(x1)-f(x2)]<0?<0?f(x)在[a,b]上是減函數(shù). ②若函數(shù)f(x)和g(x)都是減函數(shù),則在公共定義域內(nèi),f(x)+g(x)是減函數(shù);若函數(shù)f(x)和g(x)都是增函數(shù),則在公共定義域內(nèi),f(x)+g(x)是增函數(shù);根據(jù)同增異減判斷復(fù)合函數(shù)y=f(g(x))的單調(diào)性. 5.函數(shù)圖象的基本變換 (1)平移變換 y=f(x)y=f(x-h(huán)), y=f(x)y=f(x)+k. (2)伸
5、縮變換
y=f(x)y=f(ωx),
y=f(x)y=Af(x).
(3)對(duì)稱變換
y=f(x)y=-f(x),
y=f(x)y=f(-x),
y=f(x)y=-f(-x).
6.準(zhǔn)確記憶指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的基本性質(zhì)
(1)定點(diǎn):y=ax (a>0,且a≠1)恒過(0,1)點(diǎn);
y=logax(a>0,且a≠1)恒過(1,0)點(diǎn).
(2)單調(diào)性:當(dāng)a>1時(shí),y=ax在R上單調(diào)遞增;y=logax在(0,+∞)上單調(diào)遞增;
當(dāng)0
6、)=0?(x0,0)為f(x)的圖象與x軸的交點(diǎn).
(2)確定函數(shù)零點(diǎn)的三種常用方法
①解方程判定法:解方程f(x)=0;
②零點(diǎn)定理法:根據(jù)連續(xù)函數(shù)y=f(x)滿足f(a)f(b)<0,判斷函數(shù)在區(qū)間(a,b)內(nèi)存在零點(diǎn);
③數(shù)形結(jié)合法:尤其是方程兩端對(duì)應(yīng)的函數(shù)類型不同時(shí)多用此法求解.
1.解決函數(shù)問題時(shí)要注意函數(shù)的定義域,要樹立定義域優(yōu)先原則.
2.解決分段函數(shù)問題時(shí),要注意與解析式對(duì)應(yīng)的自變量的取值范圍.
3.求函數(shù)單調(diào)區(qū)間時(shí),多個(gè)單調(diào)區(qū)間之間不能用符號(hào)“∪”和“或”連接,可用“及”連接或用“,”隔開.單調(diào)區(qū)間必須是“區(qū)間”,而不能用集合或不等式代替.
4.判斷函數(shù)的 7、奇偶性,要注意定義域必須關(guān)于原點(diǎn)對(duì)稱,有時(shí)還要對(duì)函數(shù)式化簡(jiǎn)整理,但必須注意使定義域不受影響.
5.準(zhǔn)確理解基本初等函數(shù)的定義和性質(zhì).如函數(shù)y=ax(a>0,且a≠1)的單調(diào)性容易忽視字母a的取值討論,忽視ax>0;對(duì)數(shù)函數(shù)y=logax(a>0,且a≠1)容易忽視真數(shù)與底數(shù)的限制條件.
6.易混淆函數(shù)的零點(diǎn)和函數(shù)圖象與x軸的交點(diǎn),不能把函數(shù)零點(diǎn)、方程的解、不等式解集的端點(diǎn)值進(jìn)行準(zhǔn)確互化.
1.若函數(shù)f(x)=則f(f(1))=________.
答案 -2
解析 f(f(1))=f(21-4)=f(-2)=2×(-2)+2=-2.
2.函數(shù)f(x)=x2-2ax+2在區(qū)間(-∞ 8、,1]上單調(diào)遞減,則a的取值范圍是________.
答案 [1,+∞)
解析 函數(shù)f(x)=x2-2ax+2=x2-2ax+a2-a2+2=(x-a)2-a2+2,
∵二次函數(shù)圖象開口向上,對(duì)稱軸為直線x=a,且在區(qū)間(-∞,1]上單調(diào)遞減,
∴a的取值范圍是[1,+∞).
3.若函數(shù)f(x)=(a,b∈R)為奇函數(shù),則f(a+b)的值為________.
答案 -1
解析 因?yàn)楹瘮?shù)f(x)為奇函數(shù),所以f(-1)=-f(1),
f(-2)=-f(2),即
解得a=-1,b=2.經(jīng)驗(yàn)證a=-1,b=2滿足題設(shè)條件,
所以f(a+b)=f(1)=-1.
4.設(shè)函數(shù)f(x) 9、=ax2-2x+2,對(duì)于滿足1<x<4的一切x值都有f(x)>0,則實(shí)數(shù)a的取值范圍為________.
答案
解析 由題意得a>-對(duì)1<x<4恒成立,
又-=-22+,<<1,
∴max=,∴a>.
5.已知函數(shù)f(x)=+2,且滿足f(a-1)<f(2),則實(shí)數(shù)a的取值范圍是________.
答案 (-1,3)
解析 因?yàn)閒(-x)=f(x),所以函數(shù)f(x)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x+2x是單調(diào)增函數(shù),故由偶函數(shù)的性質(zhì)及f(a-1)<f(2)可得|a-1|<2,即-2<a-1<2,
即-1<a<3.
6.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f( 10、x),且f(-3)=2,則f(2019)=________.
答案 -2
解析 由題意得f(x+4)=-f(x+2)=f(x),所以函數(shù)是以4為周期的周期函數(shù),所以f(2019)=f(3)=-f(-3)=-2.
7.已知函數(shù)f(x)為奇函數(shù),且在[0,2]上單調(diào)遞增,若f(log2m)<f(log4(m+2))成立,則實(shí)數(shù)m的取值范圍是________________.
答案
解析 因?yàn)楹瘮?shù)f(x)是奇函數(shù),且在[0,2]上單調(diào)遞增,所以函數(shù)f(x)在[-2,2]上單調(diào)遞增.
故由f(log2m)<f(log4(m+2)),
可得故有
解得≤m<2.
綜上可知,m的取值范圍 11、是.
8.定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且當(dāng)x∈(-1,0)時(shí),f(x)=2x+,則f(log220)=__________.
答案?。?
解析 由f(x-2)=f(x+2)?f(x)=f(x+4),
因?yàn)?<log220<5,所以0<log220-4<1,
-1<4-log220<0.
又因?yàn)閒(-x)=-f(x),所以f(log220)=f(log220-4)=-f(4-log220)=-f?=-1.
9.若函數(shù)f(x)=單調(diào)遞增,則實(shí)數(shù)a的取值范圍是________.
答案
解析 因?yàn)楹瘮?shù)f(x)=單調(diào)遞增,所以1
13、)=0可化為2-x=3-x,無(wú)解;
當(dāng)x<0時(shí),方程f(x)-g(x)=0可化為x2+x-1=0,其根為x=或x=(舍去).
所以函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為2.
11.設(shè)函數(shù)f(x)=若互不相等的實(shí)數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是____________.
答案
解析 由題意可得函數(shù)f(x)的圖象如圖所示,若存在互不相等的實(shí)數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3)=k,則k∈(-3,4),不妨令x1<x2<x3,則x1∈,x2+x3=6,故x1+x2+x3∈.
12.定義在R上的函數(shù)f(x)滿 14、足f(x+2)=2f(x)-2,當(dāng)x∈(0,2]時(shí),f(x)=若當(dāng)x∈(0,4]時(shí),t2-≤f(x)≤3-t恒成立,則實(shí)數(shù)t的取值范圍是______________.
答案 [1,2]
解析 當(dāng)x∈(0,1)時(shí),f(x)=x2-x,函數(shù)值滿足-≤f(x)<0,當(dāng)x∈[1,2]時(shí),f(x)=,函數(shù)值滿足≤f(x)≤1.當(dāng)x∈(2,3)時(shí),f(x)=2f(x-2)-2=2x2-10x+10,函數(shù)值滿足-≤f(x)<-2;當(dāng)x∈[3,4]時(shí),f(x)=2f(x-2)-2=-2,函數(shù)值滿足-1≤f(x)≤0.
綜上,當(dāng)x∈(0,4]時(shí),函數(shù)f(x)的最小值為-,最大值為1.
由t2-≤f(x)≤3-t恒成立,得
∴
∴1≤t≤2.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語(yǔ)文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語(yǔ)文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版