秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題7 解析幾何 第28練 橢圓問題中最值得關注的基本題型 文-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:241357466 上傳時間:2024-06-20 格式:DOC 頁數(shù):16 大小:220.50KB
收藏 版權申訴 舉報 下載
高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題7 解析幾何 第28練 橢圓問題中最值得關注的基本題型 文-人教版高三數(shù)學試題_第1頁
第1頁 / 共16頁
高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題7 解析幾何 第28練 橢圓問題中最值得關注的基本題型 文-人教版高三數(shù)學試題_第2頁
第2頁 / 共16頁
高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題7 解析幾何 第28練 橢圓問題中最值得關注的基本題型 文-人教版高三數(shù)學試題_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題7 解析幾何 第28練 橢圓問題中最值得關注的基本題型 文-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關《高考數(shù)學 考前3個月知識方法專題訓練 第一部分 知識方法篇 專題7 解析幾何 第28練 橢圓問題中最值得關注的基本題型 文-人教版高三數(shù)學試題(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第28練 橢圓問題中最值得關注的基本題型 [題型分析·高考展望] 橢圓問題在高考中占有比較重要的地位,并且占的分值也較多.分析歷年的高考試題,在選擇題、填空題、解答題中都有涉及到橢圓的題,所以我們對橢圓知識必須系統(tǒng)的掌握.對各種題型,基本的解題方法也要有一定的了解. 體驗高考 1.(2015·廣東)已知橢圓+=1(m>0)的左焦點為F1(-4,0),則m等于(  ) A.2 B.3 C.4 D.9 答案 B 解析 由題意知25-m2=16,解得m2=9,又m>0,所以m=3. 2.(2015·福建)已知橢圓E:+=1(a>b>0)的右焦點為F,短軸的一個端點為M,直線l:3

2、x-4y=0交橢圓E于A,B兩點.若|AF|+|BF|=4,點M到直線l的距離不小于,則橢圓E的離心率的取值范圍是(  ) A. B. C. D. 答案 A 解析 設左焦點為F0,連接F0A,F(xiàn)0B,則四邊形AFBF0為平行四邊形. ∵|AF|+|BF|=4, ∴|AF|+|AF0|=4, ∴a=2. 設M(0,b),則≥,∴1≤b<2. 離心率e====∈, 故選A. 3.(2016·課標全國丙)已知O為坐標原點,F(xiàn)是橢圓C:+=1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為橢圓C上一點,且PF⊥x軸.過點A的直線l與線段PF交于點M,與y軸交于點E.若直線

3、BM經(jīng)過OE的中點,則橢圓C的離心率為(  ) A. B. C. D. 答案 A 解析 設M(-c,m),則E,OE的中點為D,則D,又B,D,M三點共線,所以=,a=3c,e=. 4.(2015·浙江)已知橢圓+y2=1上兩個不同的點A,B關于直線y=mx+對稱. (1)求實數(shù)m的取值范圍; (2)求△AOB面積的最大值(O為坐標原點). 解 (1)由題意知m≠0, 可設直線AB的方程為y=-x+b. 由消去y, 得x2-x+b2-1=0. 因為直線y=-x+b與橢圓+y2=1有兩個不同的交點,所以Δ=-2b2+2+>0,① 將線段AB中點M代入直線方程y=mx

4、+, 解得b=-,② 由①②得m<-或m>. (2)令t=∈∪, 則|AB|=·, 且O到直線AB的距離為d=. 設△AOB的面積為S(t), 所以S(t)=|AB|·d=≤. 當且僅當t2=時,等號成立. 故△AOB面積的最大值為. 5.(2016·北京)已知橢圓C:+=1(a>b>0)的離心率為,A(a,0),B(0,b),O(0,0),△OAB的面積為1. (1)求橢圓C的方程; (2)設P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N.求證:|AN|·|BM|為定值. (1)解 由已知=,ab=1. 又a2=b2+c2,解得a=2,b=1,c

5、=. ∴橢圓C的方程為+y2=1. (2)證明 由(1)知,A(2,0),B(0,1). 設橢圓上一點P(x0,y0),則+y=1. 當x0≠0時,直線PA方程為y=(x-2), 令x=0得yM=. 從而|BM|=|1-yM|=. 直線PB方程為y=x+1, 令y=0得xN=. ∴|AN|=|2-xN|=. ∴|AN|·|BM|=· =· = ==4. 當x0=0時,y0=-1,|BM|=2,|AN|=2, ∴|AN|·|BM|=4. 故|AN|·|BM|為定值. 高考必會題型 題型一 利用橢圓的幾何性質解題 例1 如圖,焦點在x軸上的橢圓+=1的離心率e

6、=,F(xiàn),A分別是橢圓的一個焦點和頂點,P是橢圓上任意一點,求·的最大值和最小值. 解 設P點坐標為(x0,y0).由題意知a=2, ∵e==,∴c=1,∴b2=a2-c2=3. 所求橢圓方程為+=1. ∴-2≤x0≤2,-≤y0≤. 又F(-1,0),A(2,0),=(-1-x0,-y0), =(2-x0,-y0), ∴·=x-x0-2+y=x-x0+1=(x0-2)2. 當x0=2時,·取得最小值0, 當x0=-2時,·取得最大值4. 點評 熟練掌握橢圓的幾何性質是解決此類問題的根本,利用離心率和橢圓的范圍可以求解范圍問題、最值問題,利用a、b、c之間的關系和橢圓的對稱性

7、可構造方程. 變式訓練1 如圖,F(xiàn)1、F2分別是橢圓C:+=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°. (1)求橢圓C的離心率; (2)若△AF1B的面積為40,求橢圓C的方程. 解 (1)由題意可知,△AF1F2為等邊三角形, a=2c,所以e=. (2)方法一 a2=4c2,b2=3c2, 直線AB的方程可為y=-(x-c), 將其代入橢圓方程3x2+4y2=12c2, 得B(c,-c), 所以|AB|=·|c-0|=c, 由S△AF1B=|AF1|·|AB|sin ∠F1AB =a·a·=a2=4

8、0, 解得a=10,b=5,所以橢圓C的方程為+=1. 方法二 設|AB|=t,因為|AF2|=a, 所以|BF2|=t-a, 由橢圓定義|BF1|+|BF2|=2a可知,|BF1|=3a-t, 再由余弦定理(3a-t)2=a2+t2-2atcos 60°可得, t=a,由S△AF1B=|AF1|·|AB|sin ∠F1AB =a·a·=a2=40知,a=10,b=5, 所以橢圓C的方程為+=1. 題型二 直線與橢圓相交問題 例2 (2015·課標全國Ⅱ)已知橢圓C:+=1(a>b>0)的離心率為,點(2,)在C上. (1)求橢圓C的方程; (2)直線l不過原點O且不平

9、行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M,證明:直線OM的斜率與直線l的斜率的乘積為定值. (1)解 由題意得=,+=1, 解得a2=8,b2=4. 所以橢圓C的方程為+=1. (2)證明 設直線l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).將y=kx+b代入+=1,得 (2k2+1)x2+4kbx+2b2-8=0. 故xM==,yM=k·xM+b=. 于是直線OM的斜率kOM==-, 即kOM·k=-. 所以直線OM的斜率與直線l的斜率的乘積為定值. 點評 解決直線與橢圓相交問題的一般思路:將直線方程與橢圓方程聯(lián)立

10、,轉化為一元二次方程,由判別式范圍或根與系數(shù)的關系解決.求范圍或最值問題,也可考慮求“交點”,由“交點”在橢圓內(外),得出不等式,解不等式. 變式訓練2 橢圓C:+=1(a>b>0)的離心率為,且過其右焦點F與長軸垂直的直線被橢圓C截得的弦長為2. (1)求橢圓C的方程; (2)設點P是橢圓C的一個動點,直線l:y=x+與橢圓C交于A,B兩點,求△PAB面積的最大值. 解 (1)∵橢圓C:+=1(a>b>0)的離心率為, ∴e==,∴2c=a,即4c2=3a2, 又∵過橢圓右焦點F與長軸垂直的直線被橢圓C截得的弦長為2, ∴+=1,∴+=1, 即b2=4,又a2-b2=c

11、2, ∴a2=b2+c2=4+a2,即a2=16, ∴橢圓C的方程為+=1. (2)聯(lián)立直線l:y=x+與橢圓C的方程, 得消去y, 整理可得7x2+12x-52=0, 即(7x+26)(x-2)=0,解得x=2或x=-, ∴不妨設A(2,),B(-,-), 則|AB|==, 設過P點且與直線l平行的直線L的方程為y=x+C,L與l的距離就是P點到AB的距離, 即△PAB的邊AB上的高,只要L與橢圓相切, 就有L與邊AB的最大距離,即得最大面積. 將y=x+C代入+=1, 消元整理可得:7x2+8Cx+16C2-64=0, 令判別式Δ=(8C)2-4×7×(16C2

12、-64) =-256C2+28×64=0, 解得C=± =± . ∴L與AB的最大距離為 =, ∴△PAB面積的最大值為×× =(2+). 題型三 利用“點差法,設而不求思想”解題 例3 已知橢圓+=1(a>b>0)的一個頂點為B(0,4),離心率e=,直線l交橢圓于M,N兩點. (1)若直線l的方程為y=x-4,求弦|MN|的長; (2)如果△BMN的重心恰好為橢圓的右焦點F,求直線l方程的一般式. 解 (1)由已知得b=4,且=,即=, ∴=,解得a2=20, ∴橢圓方程為+=1. 則4x2+5y2=80與y=x-4聯(lián)立, 消去y得9x2-40x=0,∴x1=

13、0,x2=, ∴所求弦長|MN|=|x2-x1|=. (2)如圖,橢圓右焦點F的坐標為(2,0),設線段MN的中點為Q(x0,y0), 由三角形重心的性質知 =2, 又B(0,4), ∴(2,-4)=2(x0-2,y0), 故得x0=3,y0=-2, 即得Q的坐標為(3,-2). 設M(x1,y1),N(x2,y2), 則x1+x2=6,y1+y2=-4, 且+=1,+=1, 以上兩式相減得 +=0, ∴kMN==-·=-×=, 故直線MN的方程為y+2=(x-3), 即6x-5y-28=0. 點評 當涉及平行弦的中點軌跡,過定點的弦的中點軌跡,過定點且被定點

14、平分的弦所在直線方程時,用“點差法”來求解. 變式訓練3 已知橢圓+=1(a>b>0),焦點在直線x-2y-2=0上,且離心率為. (1)求橢圓方程; (2)過P(3,1)作直線l與橢圓交于A,B兩點,P為線段AB的中點,求直線l的方程. 解 (1)∵橢圓+=1(a>b>0), 焦點在直線x-2y-2=0上, ∴令y=0,得焦點(2,0),∴c=2, ∵離心率e==,∴=, 解得a=4,∴b2=16-4=12, ∴橢圓方程為+=1. (2)設A(x1,y1),B(x2,y2), ∵過P(3,1)作直線l與橢圓交于A,B兩點, P為線段AB的中點, ∴由題意,x1+x2

15、=6,y1+y2=2, ∴+=0, ∴kl==-, ∴l(xiāng)的方程為y-1=-(x-3),即9x+4y-31=0. 高考題型精練 1.(2016·課標全國乙)直線l經(jīng)過橢圓的一個頂點和一個焦點,若橢圓中心到l的距離為其短軸長的,則該橢圓的離心率為(  ) A. B. C. D. 答案 B 解析 如圖,由題意得,BF=a,OF=c,OB=b, OD=×2b=b. 在Rt△OFB中,|OF|×|OB|=|BF|×|OD|, 即cb=a·b,代入解得a2=4c2, 故橢圓離心率e==,故選B. 2.已知橢圓+=1,F(xiàn)1、F2分別是橢圓的左、右焦點,點A(1,1)為橢圓

16、內一點,點P為橢圓上一點,則|PA|+|PF1|的最大值是(  ) A.6 B.6+2 C.6- D.6+ 答案 D 解析 |PA|+|PF1|=|PA|+2a-|PF2|≤2a+|AF2|=6+, 當P,A,F(xiàn)2共線時取最大值,故選D. 3.已知橢圓+=1的右焦點為F,P是橢圓上一點,點A(0,2),當△APF的周長最大時,直線AP的方程為(  ) A.y=-x+2 B.y=x+2 C.y=-x+2 D.y=x+2 答案 D 解析 橢圓+=1中a=3,b=,c==2, 由題意,設F′是左焦點, 則△APF周長=|AF|+|AP|+|PF|=|AF|+|AP|+2a

17、-|PF′| =4+6+|PA|-|PF′|≤10+|AF′| (A,P,F(xiàn)′三點共線,且P在AF′的延長線上時,取等號), 直線AP的方程為+=1, 即y=x+2,故選D. 4.如果橢圓+=1的弦被點(4,2)平分,則這條弦所在的直線方程是(  ) A.x-2y=0 B.x+2y-4=0 C.2x+3y-14=0 D.x+2y-8=0 答案 D 解析 設這條弦的兩端點為A(x1,y1),B(x2,y2), 斜率為k,則 兩式相減再變形得+k=0, 又弦中點坐標為(4,2),故k=-, 故這條弦所在的直線方程為y-2=-(x-4), 整理得x+2y-8=0,故選

18、D. 5.設F1、F2分別是橢圓C:+=1(a>b>0)的左、右焦點,點P在橢圓C上,線段PF1的中點在y軸上,若∠PF1F2=30°,則橢圓的離心率為(  ) A. B. C. D. 答案 A 解析 ∵線段PF1的中點在y軸上, 設P的橫坐標為x,F(xiàn)1(-c,0),∴-c+x=0, ∴x=c,∴P與F2的橫坐標相等, ∴PF2⊥x軸, ∵∠PF1F2=30°,∴|PF2|=|PF1|, ∵|PF2|+|PF1|=2a,∴|PF2|=a, tan ∠PF1F2===, ∴=,∴e==. 6.過點M(0,1)的直線l交橢圓C:+=1于A,B兩點,F(xiàn)1為橢圓的左焦點,當△

19、ABF1周長最大時,直線l的方程為______________. 答案 x+y-1=0 解析 設右焦點為F2(1,0),則|AF1|=4-|AF2|, |BF1|=4-|BF2|, 所以|AF1|+|BF1|+|AB| =8+|AB|-(|AF2|+|BF2|), 顯然|AF2|+|BF2|≥|AB|, 當且僅當A,B,F(xiàn)2共線時等號成立, 所以當直線l過點F2時,△ABF1的周長取最大值8, 此時直線方程為y=-x+1,即x+y-1=0. 7.(2016·江蘇)如圖,在平面直角坐標系xOy中,F(xiàn)是橢圓+=1(a>b>0)的右焦點,直線y=與橢圓交于B,C兩點,且∠BFC=

20、90°,則該橢圓的離心率是________. 答案  解析 聯(lián)立方程組 解得B、C兩點坐標為 B,C,又F(c,0), 則=,=, 又由∠BFC=90°, 可得·=0,代入坐標可得: c2-a2+=0,① 又因為b2=a2-c2. 代入①式可化簡為=, 則橢圓離心率為e===. 8.(2016·淮北一中高三最后一卷)P為橢圓+=1上的任意一點,AB為圓C:(x-1)2+y2=1的任一條直徑,則·的取值范圍是________. 答案 [3,15] 解析 圓心C(1,0)為橢圓的右焦點, ·=(+)·(+) =(+)·(-) =2-2=||2-1, 顯然||∈[

21、a-c,a+c]=[2,4], 所以·=||2-1∈[3,15]. 9.設橢圓的中心為原點O,焦點在x軸上,上頂點為A(0,2),離心率為. (1)求該橢圓的標準方程; (2)設B1(-2,0),B2(2,0),過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程. 解 (1)設橢圓的標準方程為+=1(a>b>0), ∵=,∴1-=,即=, 又∵b2=4,∴a2=20,∴橢圓的標準方程為+=1. (2)由題意知直線l的傾斜角不為0, 故可設直線l的方程為:x=my-2. 代入橢圓方程得(m2+5)y2-4my-16=0, 設P(x1,y1),Q(x2,y2)

22、, 則y1+y2=,y1·y2=-, 又=(x1-2,y1),=(x2-2,y2), 所以·=(x1-2)(x2-2)+y1y2 =(my1-4)(my2-4)+y1y2 =(m2+1)y1y2-4m(y1+y2)+16 =--+16 =-, 由PB2⊥QB2得·=0, 即16m2-64=0,解得m=±2, ∴直線l的方程為x=±2y-2,即x±2y+2=0. 10.(2016·課標全國乙)設圓x2+y2+2x-15=0的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過點B作AC的平行線交AD于點E. (1)證明|EA|+|EB|為定值,并寫出點

23、E的軌跡方程; (2)設點E的軌跡為曲線C1,直線l交C1于M,N兩點,過點B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍. 解 (1)因為|AD|=|AC|,EB∥AC, 故∠EBD=∠ACD=∠ADC,所以|EB|=|ED|, 故|EA|+|EB|=|EA|+|ED|=|AD|. 又圓A的標準方程為(x+1)2+y2=16,從而|AD|=4,所以|EA|+|EB|=4. 由題設得A(-1,0),B(1,0),|AB|=2,由橢圓定義可得點E的軌跡方程為:+=1(y≠0). (2)當l與x軸不垂直時,設l的方程為y=k(x-1)(k≠0),M(x1,y1

24、),N(x2,y2). 由得(4k2+3)x2-8k2x+4k2-12=0. 則x1+x2=,x1x2=, 所以|MN|=|x1-x2|=. 過點B(1,0)且與l垂直的直線m:y=-(x-1), 點A到m的距離為, 所以|PQ|=2=4. 故四邊形MPNQ的面積 S=|MN||PQ|=12. 可得當l與x軸不垂直時,四邊形MPNQ面積的取值范圍為(12,8). 當l與x軸垂直時,其方程為x=1,|MN|=3,|PQ|=8,四邊形MPNQ的面積為12. 綜上,四邊形MPNQ面積的取值范圍為[12,8). 11.(2015·安徽)設橢圓E的方程為+=1(a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為. (1)求橢圓E的離心率e; (2)設點C的坐標為(0,-b),N為線段AC的中點, 證明:MN⊥AB. (1)解 由題設條件知,點M的坐標為, 又kOM=,從而=. 進而a=b,c==2b,故e==. (2)證明 由N是AC的中點知,點N的坐標為,可得=, 又=(-a,b), 從而有·=-a2+b2=(5b2-a2). 由(1)的計算結果可知a2=5b2, 所以·=0,故MN⊥AB.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!