《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》第9章



《《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》第9章》由會員分享,可在線閱讀,更多相關《《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》第9章(87頁珍藏版)》請在裝配圖網上搜索。
1、,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Data Mining: Concepts and Techniques,*,第7章: 分類和預測,What is classification? What is prediction?,Issues regarding classification and prediction,Classification by decision tree inductio
2、n,Bayesian Classification,Classification by Neural Networks,Classification by Support Vector Machines (SVM),Classification based on concepts from association rule mining,Other Classification Methods,Prediction,Classification accuracy,Summary,2024/12/10,1,Data Mining: Concepts and Techniques,Classifi
3、cation:,predicts categoricalclass labels (discrete or nominal),classifies data (constructsa model) basedon thetraining setand thevalues(class labels) in aclassifying attributeand uses it in classifyingnew data,Prediction:,modelscontinuous-valued functions,i.e.,predicts unknown or missingvalues,Typic
4、alApplications,creditapproval,targetmarketing,medicaldiagnosis,treatment effectiveness analysis,Classificationvs. Prediction,2023/3/7,2,Data Mining:Conceptsand Techniques,Classification—A Two-Step Process,Modelconstruction: describingasetofpredeterminedclasses,Each tuple/sampleisassumed to belongtoa
5、 predefinedclass, as determinedbytheclasslabelattribute,Theset of tuplesused formodelconstructionistrainingset,Themodelisrepresentedasclassificationrules, decision trees,ormathematicalformulae,Modelusage: forclassifyingfutureorunknownobjects,Estimateaccuracyofthemodel,Theknownlabeloftestsampleiscomp
6、aredwiththeclassifiedresultfromthemodel,Accuracyrate is thepercentage of testset samplesthatarecorrectly classifiedbythe model,Testsetisindependentoftrainingset,otherwiseover-fittingwilloccur,Iftheaccuracyisacceptable,usethemodeltoclassifydatatupleswhoseclasslabelsarenotknown,2023/3/7,3,DataMining:C
7、onceptsandTechniques,ClassificationProcess(1):ModelConstruction,Training,Data,Classification,Algorithms,IFrank=,‘,‘professor,’,’,ORyears>6,THENtenured=,‘,‘yes’,Classifier,(Model),2023/3/7,4,DataMining:Concepts and Techniques,Classification Process (2):UsetheModel inPrediction,Classifier,Testing,Data
8、,Unseen Data,(,Jeff, Professor,4),Tenured?,2023/3/7,5,DataMining:Concepts and Techniques,Supervised vs. UnsupervisedLearning,Supervised learning(classification),Supervision:Thetraining data (observations, measurements,etc.) are accompanied bylabelsindicating t,he c,lassoftheobservations,Newdataiscla
9、ssified basedonthetrainingset,Unsupervisedlearning(clustering),Theclass labelsoftrainingdata isunknown,Given asetof measurements,observations, etc.withtheaimofestablishingtheexistence of classes orclusters inthedata,2023/3/7,6,Dat,a M,ining:Conceptsand Techniques,第7章: 分,類,類和預,測,測,What is classificat
10、ion?What is prediction?,Issuesregarding classification andprediction,Classificationbydecisiontree induction,BayesianClassification,ClassificationbyNeuralNetworks,ClassificationbySupport VectorMachines(SVM),Classificationbasedonconceptsfrom association rulemining,OtherClassificationMethods,Prediction
11、,Classificationaccuracy,Summary,2023/3/7,7,DataMining: Concepts andTechniques,Issues Regarding Classification andPrediction (1): Dat,Datacleaning,Preprocessdatain orderto reducenoiseandhandle missingvalues,Relevanceanalysis (feature selection),Remove theirrelevant orredundantattributes,Datatransform
12、ation,Generalizeand/or normalize data,2023/3/7,8,Data Mining: Conceptsand Techniques,Issuesregarding classification andprediction (2): EvaluatingClassificationMethods,Predictive accuracy,Speed and scalability,time toconstruct themodel,time touse the model,Robustness,handling noiseand missing values,
13、Scalability,efficiency indisk-residentdatabases,Interpretability:,understandingand insight providedby themodel,Goodness of rules,decision treesize,compactness ofclassification rules,2023/3/7,9,Data Mining:Concepts and Techniques,第7章: 分,類,類和預測,What is classification?What is prediction?,Issuesregardin
14、g classification andprediction,Classification bydecision tree induction,Bayesian Classification,Classification byNeuralNetwo,rks,Classification bySupport Vector Machines(SVM),Classification based onconcepts from association rulemining,OtherClassification Methods,Prediction,Classification accuracy,Su
15、mmary,2023/3/7,10,Data Mining:Conceptsand Techniques,TrainingDataset,This followsanexamplefromQuinlan’sID3,2023/3/7,11,Data Mining:Conceptsand Techniques,Output: ADecisionTreefor,“,“,buys_computer”,age?,overcast,student?,creditrating?,no,yes,fair,excellent,<=30,>40,no,no,yes,yes,yes,30..40,2023/3/7,
16、12,DataMining: Concepts andTechniques,Algorithmfor Decision Tree Induction,Basicalgorithm(a greedyalgorithm),Treeis constructedin atop-down recursive divide-and-conquer manner,At start,all the training examplesareat the root,Attributesarecategorical (ifcontinuous-valued,theyare discretizedin advance
17、),Examples are partitionedrecursively based onselectedattributes,Testattributesareselected on thebasis ofa heuristic orstatistical measure(e.g.,information gain),Conditionsforstopping partitioning,All samples fora given node belongto the same class,Thereareno remaining attributes for furtherpartitio
18、ning –majority votingis employed forclassifying the leaf,Thereareno samplesleft,2023/3/7,13,DataMining:Concepts and Techniques,Attribute SelectionMeasure:InformationGain (ID3/C4.5),Select the attributewith the highest information gain,S contains s,i,tuples of classC,i,fori ={1,,…,…, m},informationme
19、asuresinfo required to classify any arbitrarytuple,,entropyof attributeA withvalues {a,1,,a,2,,…,a,v,},,,informationgainedby branchingonattribute A,,2023/3/7,14,DataMining:Concepts and Techniques,Attribute Selectionby Information GainComputation,Class P:buys_computer =,“,“yes”,Class N:buys_computer
20、=,“,“no,”,”,I(p,n)= I(9, 5) =0.940,Computetheentropyfor,age,:,,,,,,means “age <=30”has5 out of 14samples, with 2yes,’,’esand3 no’s.Hence,,,Similarly,,2023/3/7,15,Data Mining:Concepts and Techniques,OtherAttribute Selection Measures,Gini index(CART,IBM IntelligentMiner),All attributes areassumed cont
21、inuous-valued,Assumethereexistseveral possiblesplitvaluesfor each attribute,May need other tools, such asclustering,to getthe possible split values,Can bemodified for categorical attributes,2023/3/7,16,Data Mining:Concepts and Techniques,Gini,Index(IBM IntelligentMiner),If a data set,T,contains exam
22、plesfrom,n,classes, gini index,,gini,(,T,) is definedas,,where,p,j,is therelative frequency of class,j,in,T.,If a data set,T,is split into twosubsets,T,1,and,T,2,with sizes,N,1,and,N,2,respectively, the,gini,indexof thesplitdatacontains examplesfrom,n,classes, the,gini,index,gini,(,T,) is definedas,
23、,,The attribute provides the smallest,gini,split,(,T,) is chosento split thenode(,need to enumerateall possiblesplitting pointsfor each attribute,).,2023/3/7,17,DataMining: Concepts andTechniques,ExtractingClassificationRules from Trees,Representthe knowledge in theformofIF-THENrules,One rule is cre
24、atedfor each path from the root toa leaf,Eachattribute-valuepairalong a path formsa conjunction,The leaf node holdsthe classprediction,Rulesareeasier forhumans tounderstand,Example,IF,age,= “<=30” AND,student,= “,no,” THEN,buys_computer,= “,no,”,IF,age,= “<=30” AND,student,= “,yes,” THEN,buys_com
25、puter,= “,yes,”,IF,age,= “31,…,…40”THEN,buys_computer,= “,yes,”,IF,age,= “>40”AND,credit_rating,= “,excellent,” THEN,buys_computer,= “,yes,”,IF,age,= “<=30” AND,credit_rating,= “,fair,” THEN,buys_computer,= “,no,”,2023/3/7,18,Data Mining: Conceptsand Techniques,Avoid Overfitting inClassification,
26、Overfitting:An induced tree may overfitthe training data,Too many branches, some mayreflectanomalies dueto noise or outliers,Poor accuracyfor unseen samples,Two approachesto avoid overfitting,Prepruning: Halt treeconstructionearly—do not split anode ifthis would result inthe goodnessmeasurefalling b
27、elowa threshold,Difficult to choose an appropriatethreshold,Postpruning: Remove branchesfrom a,“,“fullygrown”tree—get a sequenceof progressively pruned trees,Use a set of data differentfrom the training data to decide which isthe “best pruned tree,”,”,2023/3/7,19,Data Mining: Conceptsand Techniques,
28、Approaches toDetermine theFinal Tree Size,Separate training (2/3) andtesting(1/3)sets,Use cross validation,e.g.,10-foldcrossvalidation,Use allthe data fortraining,but apply astatistical test(e.g.,chi-square) toestimate whether expandingor pruning a node mayimprove the entire distribution,Use minimum
29、 description length (MDL) principle,haltinggrowthof thetree when theencoding is minimized,2023/3/7,20,Data Mining: Conceptsand Techniques,Enhancements to basicdecision treeinduction,Allow for continuous-valuedattributes,Dynamically define new discrete-valued attributesthat partition the continuous a
30、ttribute value into a discreteset ofintervals,Handlemissingattribute values,Assignthe most common valueof theattribute,Assignprobability toeach of the possiblevalues,Attribute construction,Createnew attributesbasedon existing ones thatare sparselyrepresented,This reduces fragmentation,repetition, an
31、d replication,2023/3/7,21,Data Mining:Conceptsand Techniques,ClassificationinLargeDatabases,Classification—a classicalproblem extensively studiedbystatisticiansandmachinelearningresearchers,Scalability:Classifyingdatasets withmillionsofexamplesand hundreds of attributeswithreasonable speed,Whydecisi
32、ontreeinductionindatamining?,relatively fasterlearningspeed(thanotherclassificationmethods),convertibletosimpleand easytounderstandclassificationrules,canuse SQLqueries foraccessingdatabases,comparable classification accuracy withothermethods,2023/3/7,22,DataMining:ConceptsandTechniques,ScalableDeci
33、sionTreeInductionMethodsinDataMiningStudies,SLIQ(EDBT’96,—,—Mehtaetal.),buildsanindexforeachattributeandonlyclasslistandthecurrentattributelistresideinmemory,SPRINT(VLDB’96,—,—J.Shaferetal.),constructsanattributelistdatastructure,PUBLIC(VLDB’98,—,—Rastogi&Shim),integratestreesplittingandtreepruning:
34、stopgrowingthetreeearlier,RainForest(VLDB’98,—,—Gehrke,Ramakrishnan&Ganti),separatesthescalabilityaspectsfromthecriteriathatdeterminethequalityofthetree,buildsanAVC-list(attribute,value,classlabel),2023/3/7,23,DataMining:Concepts and Techniques,DataCube-BasedDecision-Tree Induction,Integrationof gen
35、eralization with decision-treeinduction (Kamber et al,’,’97).,Classification at primitiveconceptlevels,E.g., precise temperature, humidity,outlook, etc.,Low-level concepts,scattered classes, bushyclassification-trees,Semanticinterpretationproblems.,Cube-based multi-level classification,Relevance ana
36、lysis at multi-levels.,Information-gainanalysis with dimension+ level.,2023/3/7,24,DataMining:Concepts and Techniques,PresentationofClassification Results,2023/3/7,25,Data Mining: Conceptsand Techniques,Visualizationof aDecision Treein SGI/MineSet3.0,2023/3/7,26,Data Mining: Conceptsand Techniques,I
37、nteractive Visual Miningby Perception-Based Classification(PBC),2023/3/7,27,Data Mining: Conceptsand Techniques,第7章: 分類,和,和預測,What isclassification? Whatis prediction?,Issuesregarding classification andprediction,Classificationby decision tree induction,Bayesian Classification,Classificationby Neura
38、l Networks,Classificationby Support Vector Machines(SVM),Classificationbasedon concepts from associationrule mining,Other ClassificationMethods,Prediction,Classificationaccuracy,Summary,2023/3/7,28,Data Mining:Concepts and Techniques,Bayesian Classification:Why?,Probabilistic learning,: Calculateex
39、plicit probabilitiesfor hypothesis, among the mostpractical approaches tocertain types oflearning problems,Incremental,: Eachtraining examplecan incrementallyincrease/decreasethe probability that a hypothesis iscorrect. Prior knowledge canbe combinedwithobserved data.,Probabilistic prediction,: Pr
40、edict multiple hypotheses, weighted by their probabilities,Standard,: EvenwhenBayesian methods are computationallyintractable, theycan providea standardof optimal decision making against which other methodscan be measured,2023/3/7,29,Data Mining:Concepts and Techniques,Bayesian Theorem:Basics,Let Xb
41、e a data sample whose class label is unknown,Let Hbe a hypothesis that X belongsto class C,For classificationproblems, determine P(H/X): the probability that thehypothesis holds given the observeddata sampleX,P(H):priorprobabilityof hypothesis H (i.e. the initial probability before we observe any da
42、ta, reflects the background knowledge),P(X):probabilitythat sampledata is observed,P(X|H): probability ofobserving the sample X,giventhat the hypothesis holds,,2023/3/7,30,DataMining:ConceptsandTechniques,BayesianTheorem,Giventrainingdata,X,posterioriprobabilityofahypothesisH,P(H|X),followstheBayest
43、heorem,,,Informally,thiscanbewrittenas,posterior=likelihoodxprior/evidence,MAP(maximumposteriori)hypothesis,,,Practicaldifficulty:requireinitialknowledgeofmanyprobabilities,significantcomputationalcost,2023/3/7,31,Data Mining: Conceptsand Techniques,Na?ve Bayes Classifier,A simplified assumption: at
44、tributesare conditionally independent:,,,The product ofoccurrence ofsay 2elements x,1,and x,2,, giventhe current class isC, isthe product ofthe probabilities ofeach elementtaken separately, given thesame class P([y,1,,y,2,],C) =P(y,1,,C) * P(y,2,,C),No dependencerelation between attributes,Greatlyre
45、duces the computation cost, onlycountthe class distribution.,Once the probabilityP(X|C,i,) is known, assign Xto theclass with maximum P(X|C,i,)*P(C,i,),2023/3/7,32,Data Mining:Conceptsand Techniques,Trainingdataset,Class:,C1:buys_computer=,‘yes’,C2:buys_computer=,‘no,’,’,,Data sample,X =(age<=30,,In
46、come=medium,,Student=yes,Credit_rating=,Fair),2023/3/7,33,Data Mining:Conceptsand Techniques,Na?veBayesianClassifier:Example,Compute P(X/Ci)for eachclass,,P(age=,“,“<30”| buys_computer=“yes”)= 2/9=0.222,P(age=,“,“<30”| buys_computer=“no”)=3/5=0.6,P(income=,“,“medium”| buys_computer=“yes”)=4/9=0.444,
47、P(income=,“,“medium”| buys_computer=“no”)=2/5=0.4,P(student=“yes”|buys_computer=“yes)=6/9=0.667,P(student=“yes”|buys_computer=“no”)=1/5=0.2,P(credit_rating=“fair,”,” |buys_computer=,“,“yes”)=6/9=0.667,P(credit_rating=“fair,”,” |buys_computer=,“,“no,”,”)=2/5=0.4,,X=(age<=30 ,income=medium,student=yes
48、,credit_rating=fair),,P(X|Ci) :,P(X|buys_computer=,“,“yes”)= 0.222 x0.444x0.667x 0.0.667=0.044,P(X|buys_computer=,“,“no,”,”)=0.6 x0.4 x0.2 x0.4 =0.019,P(X|Ci)*P(Ci):,P(X|buys_computer=,“,“yes”)*P(buys_computer=“yes”)=0.028,P(X|buys_computer=,“,“yes”)*P(buys_computer=“yes”)=0.007,,X belongstoclass “b
49、uys_computer=yes”,2023/3/7,34,Data Mining:Conceptsand Techniques,Na?veBayesianClassifier: Comments,Advantages:,Easyto implement,Goodresults obtained inmostof the cases,Disadvantages,Assumption: class conditionalindependence ,thereforelossof accuracy,Practically, dependenciesexist among variables,E.g
50、.,hospitals: patients: Profile: age, family history etc,Symptoms:fever, cough etc., Disease: lung cancer,diabetesetc,Dependencies among thesecannot bemodeled byNa?ve BayesianClassifier,How to deal with these dependencies?,Bayesian BeliefNetworks,2023/3/7,35,DataMining: Concepts andTechniques,Bayesia
51、n Networks,Bayesian beliefnetwork allowsa,subset,of the variables conditionallyindependent,A graphical model ofcausal relationships,Represents,dependency,among the variables,Gives aspecification ofjoint probability distribution,X,Y,Z,P,Nodes: random variables,Links: dependency,X,Yaretheparentsof Z,
52、and Yis the parent ofP,No dependency between ZandP,Hasno loopsorcycles,2023/3/7,36,DataMining:Concepts and Techniques,BayesianBeliefNetwork:AnExample,Family,History,LungCancer,PositiveXRay,Smoker,Emphysema,Dyspnea,,LC,~,LC,(,FH,S),(,FH,~S),(~,FH,S),(~,FH,~S),0.8,0.2,0.5,0.5,0.7,0.3,0.1,0.9,BayesianB
53、eliefNetworks,Theconditionalprobabilitytable for the variable LungCancer:,Shows the conditional probability for each possiblecombinationof its parents,,,2023/3/7,37,Data Mining:Concepts and Techniques,Learning BayesianNetworks,Several cases,Givenboth the network structure andall variables observable
54、: learn only theCPTs,Network structureknown,somehiddenvariables:methodof gradientdescent, analogous to neuralnetwork learning,Network structureunknown, allvariables observable: searchthrough themodelspaceto reconstruct graph topology,Unknown structure,all hiddenvariables: no goodalgorithmsknownfor t
55、his purpose,D. Heckerman, Bayesian networks fordata mining,2023/3/7,38,Data Mining:Concepts and Techniques,第7章: 分,類,類和預測,What is classification?What is prediction?,Issuesregarding classification andprediction,Classification bydecision tree induction,Bayesian Classification,Classification byNeuralNet
56、works,Classification bySupport Vector Machines(SVM),Classification based onconcepts from association rulemining,OtherClassification Methods,Prediction,Classification accuracy,Summary,2023/3/7,39,DataMining:ConceptsandTechniques,Classification:,predictscategoricalclasslabels,TypicalApplications,{cred
57、ithistory,salary}->creditapproval(Yes/No),{Temp,Humidity}-->Rain(Yes/No),Classification,Mathematically,2023/3/7,40,DataMining:ConceptsandTechniques,LinearClassification,BinaryClassificationproblem,Thedataabovetheredlinebelongstoclass,‘,‘x’,Thedatabelowredlinebelongstoclass,‘,‘o’,Examples,–,–SVM,Perc
58、eptron,ProbabilisticClassifiers,,x,x,x,x,x,x,x,x,x,x,o,o,o,o,o,o,o,o,o,o,o,o,o,2023/3/7,41,Data Mining: Conceptsand Techniques,DiscriminativeClassifiers,Advantages,prediction accuracy is generally high,(as compared to Bayesian methods –in general),robust,workswhen trainingexamples contain errors,fas
59、t evaluation of the learned target function,(Bayesian networks are normally slow),Criticism,long trainingtime,difficult to understand thelearnedfunction (weights),(Bayesian networks can be used easily forpatterndiscovery),not easy to incorporate domain knowledge,(easy in the form ofpriorson thedata
60、ordistributions),2023/3/7,42,Data Mining: Conceptsand Techniques,NeuralNetworks,Analogyto BiologicalSystems (Indeed a great example ofa goodlearning system),MassiveParallelism allowingfor computational efficiency,The first learning algorithmcame in 1959(Rosenblatt) who suggested that ifa target outp
61、ut valueis provided for a single neuron with fixed inputs, onecan incrementally change weights tolearnto produce these outputs using theperceptron learning rule,,2023/3/7,43,Data Mining: Conceptsand Techniques,A Neuron,The,n,-dimensional input vector,x,is mapped intovariable,y,by means of the scala
62、r product anda nonlinear functionmapping,m,k,-,f,weighted,sum,Input,vector,x,output,y,Activation,function,,weight,vector,w,?,w,0,w,1,w,n,x,0,x,1,x,n,2023/3/7,44,DataMining:Concepts and Techniques,A Neuron,m,k,-,f,weighted,sum,Input,vector,x,output,y,Activation,function,,weight,vector,w,?,w,0,w,1,w,
63、n,x,0,x,1,x,n,2023/3/7,45,DataMining:Concepts and Techniques,Multi-LayerPerceptron,Output nodes,Input nodes,Hidden nodes,Output vector,Input vector:,x,i,w,ij,,,NetworkTraining,Theultimateobjective of training,obtain asetofweightsthatmakes almost all the tuplesinthetrainingdata classifiedcorrectly,St
64、eps,Initialize weights withrandom values,Feedtheinput tuples into the network one by one,Foreachunit,Computethenetinput totheunit asa linear combination ofalltheinputsto the unit,Compute theoutputvalueusingthe activationfunction,Compute theerror,Updatethe weightsand thebias,,,Network Pruningand Rule
65、Extraction,Network pruning,Fullyconnectednetworkwill be hardtoarticulate,N,inputnodes,,h,hiddennodesand,m,outputnodesleadto,h(m+N),weights,Pruning:Removesomeofthelinkswithoutaffectingclassificationaccuracyofthe network,Extracting rules fromatrained network,Discretize activationvalues;replace individ
66、ualactivationvaluebytheclusteraverage maintaining thenetwork accuracy,Enumeratethe outputfrom thediscretizedactivation valuestofind rules betweenactivationvalueandoutput,Find therelationshipbetweentheinputand activationvalue,Combine theabovetwotohaverulesrelatingtheoutput to input,,,Chapter 7. Classification andPrediction,What is classification?What is prediction?,Issuesregarding classification andprediction,Classificationbydecisiontree induction,BayesianClassification,ClassificationbyNeuralNetw
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題黨課講稿:以高質量黨建保障國有企業(yè)高質量發(fā)展
- 廉政黨課講稿材料:堅決打好反腐敗斗爭攻堅戰(zhàn)持久戰(zhàn)總體戰(zhàn)涵養(yǎng)風清氣正的政治生態(tài)
- 在新錄用選調生公務員座談會上和基層單位調研座談會上的發(fā)言材料
- 總工會關于2025年維護勞動領域政治安全的工作匯報材料
- 基層黨建工作交流研討會上的講話發(fā)言材料
- 糧食和物資儲備學習教育工作部署會上的講話發(fā)言材料
- 市工業(yè)園區(qū)、市直機關單位、市紀委監(jiān)委2025年工作計劃
- 檢察院政治部關于2025年工作計劃
- 辦公室主任2025年現(xiàn)實表現(xiàn)材料
- 2025年~村農村保潔員規(guī)范管理工作方案
- 在深入貫徹中央8項規(guī)定精神學習教育工作部署會議上的講話發(fā)言材料4篇
- 開展深入貫徹規(guī)定精神學習教育動員部署會上的講話發(fā)言材料3篇
- 在司法黨組中心學習組學習會上的發(fā)言材料
- 國企黨委關于推動基層黨建與生產經營深度融合工作情況的報告材料
- 副書記在2025年工作務虛會上的發(fā)言材料2篇