《《點、線、面、體》導(dǎo)學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《《點、線、面、體》導(dǎo)學(xué)案(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、4.1.2 點、線、面、體
1.經(jīng)歷從幾何體中尋找點、線、面的過程,知道點是構(gòu)成圖形的基本要素.
2.經(jīng)歷探索點、線、面、體之間關(guān)系的過程,感受它們之間的關(guān)系.
3.能夠用它們來解釋生活中的現(xiàn)象,體會數(shù)學(xué)與生活的密切聯(lián)系.
4.重點:點、線、面、體之間的關(guān)系.
【問題探究】閱讀教材P 119~121,回答下列問題.
探究一:
1.觀察如圖所示的長方體,回答下列問題.
(1)幾何體都是由面圍成的,長方體有幾個面?這些面是平的還是曲的?
6,都是平面.
(2)在長方體中,面與面相交形成線,這樣的線有幾條,是直的還是曲的?
12條,都是直的.
(3)在長方
2、體中,線與線相交形成點,這樣的點有幾個?
8個.
2.觀察右圖圓柱,回答下列問題.
(1)圓柱有幾個面?這些面是平的還是曲的?
3,兩個底面是平面,一個側(cè)面是曲面.
(2)在圓柱中,面與面相交也形成線,這樣的線有幾條,是直的還是曲的?
2條,都是曲的.
【歸納】1.包圍著體的是 面 ,面與面相交的地方形成 線 ,線與線相交的地方形成 點 .
2.面有 平面 和 曲面 兩種,線有 直線 和 曲線 兩種.
【預(yù)習(xí)自測】如圖,圓錐有 2 個面, 1 個平面, 1 個曲面,面與面共相交成 1 條線,是 曲 線.
探究二:
1.在黑暗的地方用手揮動一炷香火頭,就會看到火頭形
3、成一條直線,這種現(xiàn)象說明了什么?你能再舉出一些實例嗎?
點動成線.如足球飛行的軌跡;沙漠中的腳印成線;流星劃過星空的軌跡.
2.雨天的雨刷刷過形成一個扇形,這種現(xiàn)象說明了什么?你能再舉出一些實例嗎?
線動成面.如:黑板擦在黑板上擦出一片干凈的區(qū)域.
3.賓館的旋轉(zhuǎn)門旋轉(zhuǎn)一周,形成一個圓柱,這種現(xiàn)象說明了什么?你能再舉出一些類似的實例嗎?
面動成體,如半圓繞它的直徑旋轉(zhuǎn)一周形成一個球等.
【歸納】點動成 線 ,線動成 面 ,面動成 體 .
【預(yù)習(xí)自測】下圖中的幾何體分別是由哪個平面圖形旋轉(zhuǎn)后得到?
1-C,2-B,3-D,4-A.
互動探究1:觀察圖形,
4、并回答下面的問題.
(1)三棱柱有 6 個頂點, 9 條棱, 5 個面;
(2)四棱柱有 8 個頂點, 12 條棱, 6 個面;
(3)五棱柱有 10 個頂點, 15 條棱, 7 個面;
(4)六棱柱、七棱柱各有幾個頂點,幾條棱,幾個面?
解:六棱柱有12個頂點,18條棱,8個面;七棱柱有14個頂點,21條棱,9個面.
【方法歸納交流】n棱柱有 2n 個頂點, 3n 條棱, (n+2) 個面.
[變式訓(xùn)練]如圖所示的幾何體由 4 個面圍成,面與面相交成 6 條線,其中直線有 4 條,曲線有 2 條.
互動探究2:“槍扎一條線,棍掃一大片”這個現(xiàn)象說明: 點動成線
5、和線動成面 .
[變式訓(xùn)練]請同學(xué)們手拿一枚硬幣,將其立在桌面上用力一轉(zhuǎn),它形成的是一個 球 體,由此說明 面動成體 .
互動探究3:如圖,將直角三角形繞著它的一條直角邊旋轉(zhuǎn)一周,就這個旋轉(zhuǎn)過程,請思考下列問題.
(1)直角三角形最左邊的頂點,經(jīng)運動形成了一個怎樣的圖形?
(2)直角三角形水平的邊,經(jīng)運動形成了一個怎樣的圖形?
(3)直角三角形的面經(jīng)運動形成了一個怎樣的圖形?
解:(1)三角形最左邊的頂點旋轉(zhuǎn)一周后,形成一個圓,是一條曲線;
(2)三角形水平的邊旋轉(zhuǎn)一周后,形成一個圓面;
(3)三角形的面旋轉(zhuǎn)一周后,形成一個圓錐體.
互動探究4:將一個長方形繞它的一邊所在的直線旋轉(zhuǎn)一周,得到的幾何體是圓柱,現(xiàn)有一個長為4厘米,寬為3厘米的長方形,分別繞它的長、寬所在的直線旋轉(zhuǎn)一周,得到不同的圓柱體,它們的體積分別為多少?
解:以長方形的長邊所在的直線為軸旋轉(zhuǎn)得到的圓柱體的體積為π324=36π(cm3);
以長方形的短邊所在的直線為軸旋轉(zhuǎn)得到圓柱體的體積為π423=48π(cm3).
見《導(dǎo)學(xué)測評》P45