《51軸對稱現(xiàn)象課件》由會員分享,可在線閱讀,更多相關(guān)《51軸對稱現(xiàn)象課件(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第 五 章 生 活 中 的 軸 對 稱 5.1 軸 對 稱 現(xiàn) 象 探 索 與 發(fā) 現(xiàn)觀 察 下 面 的 圖 片 , 、 你 認 為 這 些 圖 片 有 什 么 特 點 ? 、 如 果 將 這 些 圖 案 沿 某 條 直 線 折疊 , 你 會 發(fā) 現(xiàn) 有 什 么 現(xiàn) 象 發(fā) 生 ? 觀 察 右 面 的 動 畫 , 探 究 軸 對 稱 圖 形 .1、 軸 對 稱 圖 形 : 把 一 個 圖 形 沿 著 某 條 直線 對 折 , 如 果 直 線 兩 旁 的 部 分 能 夠 完 全 重 合 , 那 么這 個 圖 形 叫 做 軸 對 稱 圖 形 .2、 沿 著 對 折 的 直 線 是 對 稱 軸 說
2、一 說說 明 : ( 1) 軸 對 稱 圖 形 是 一 個圖 形 ; ( 2) 對 折 ( 3) 重 合 1. 下 面 圖 形 是 軸 對 稱 圖 形 的 有 ( ) A. 角 B. 線 段 C. 太 極 圖 D. 香 港 特 別 行 政 區(qū) 區(qū) 旗 上 的 紫 荊 花 E. 等 腰 三 角 形 F. 正 五 角 星選 一 選 A,B,E,F C D F 看 一 看1. 下 列 圖 形 中 不 是 軸 對 稱 圖 形 的 是 ( )( 1) ( 2) ( 3)( 4) ( 5) ( 6) 3 , 5 一 ; 三 ; 個 ; 八 ; 十 ; 來 ; 苦 ; 天 ; 中 。 1.下 面 說 法 正
3、 確 的 是 ( )B, D 想 一 想A.角 是 一 個 以 角 平 分 線 為 對 稱 軸 的 軸 對 稱 圖 形 。B. 英 文 中 大 寫 的 字 母 A是 一 個 軸 對 稱 圖 形 。 C. 等 腰 三 角 形 底 邊 上 的 高 是 它 的 對 稱 軸 。 D. 等 邊 三 角 形 每 一 條 邊 的 垂 直 平 分線 都 是 它 的 對 稱 軸 。 將 一 張 紙 對 折 , 用 筆 尖 扎 出 如 圖 所示 的 圖 形 , 然 后 將 紙 打 開 , 你 會 得到 什 么 圖 形 ? 你 還 能 以 這 樣 的 方 法得 到 其 它 的 軸 對 稱 圖 形 嗎 ?想 一 想
4、43 21AB CD FE F DCE AB 觀 察 動 畫 , 這 是 幾 個 圖 形 , 對 折 后 有 什 么 現(xiàn) 象發(fā) 生 ?1、 兩 個 圖 形 成 軸 對 稱 對 于 兩 個 平 面 圖 形 , 如 果沿 一 條 直 線 對 折 , 這 兩 個圖 形 能 夠 完 全 重 合 , 那 么 我們 稱 這 兩 個 圖 形 成 軸 對 稱 。2、 沿 著 對 折 的 直 線 是 對 稱 軸說 明 : ( 1) “ 軸 對 稱 ” 是 兩 個 圖形 。 ( 2) 對 折 ( 3) 重 合 軸 對 稱 圖 形 與 軸 對 稱 的 關(guān) 系 1、 軸 對 稱 圖 形 是 個 圖 形 , 而 軸 對
5、 稱 是 個 圖 形 。 一兩2、 對 于 平 面 圖 形 , 當 把 直 線 ( 對 稱 軸 ) 兩 旁 的 部 分 看 成 一 個 圖 形 時 , 它 便 是 圖 形 。 當 把 直 線 ( 對 稱 軸 ) 兩 旁 的 部 分 看 成 兩 個 圖 形 時 , 它 便 是 兩 個 圖 形 成 。軸 對 稱軸 對 稱 下 面 的 圖 形 你 認 為 哪 些 是 軸 對 稱圖 形 , 哪 些 是 兩 個 圖 形 成 軸 對 稱 ?( 1) ( 2) ( 3) ( 4)( 5) ( 6) ( 7) 指 出 下 面 的 圖 形 是 軸 對 稱 圖 形 還 是兩 個 圖 形 成 軸 對 稱 ? 并 畫
6、 出 它 們 的對 稱 軸 。( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8) ( 9) ( 10) ( 11) ( 12) 2. 請 你 就 n 邊 形 的 對 稱 軸 條 數(shù) 做 一 個 猜 想 . 我 的 猜 想 是 :1.正 n邊 形 有 n條 對 稱 軸 ; 2.隨 著 正 n形 邊 數(shù) 的 增 加 ,對 稱 軸 條 數(shù) 也 在 增 加 . 1. 根 據(jù) 上 圖 填 寫 上 表 . 圖 形 號 碼 1 2 3 4 5 6 7 對 稱 軸 條 數(shù) 無數(shù) 4 3 5 6 7 8 本 節(jié) 回 顧1、 探 索 生 活 中 的 軸 對 稱 現(xiàn) 象 的 共 同 特 征 。3、 欣 賞 生 活 中 的 一 些 軸 對 稱 ( 圖 形 ) ,體 會 它 的 文 化 內(nèi) 涵 。2、 通 過 豐 富 的 生 活 實 例 來 認 識 軸 對 稱( 圖 形 ) , 并 能 利 用 軸 對 稱 解 決 一 些簡 單 的 實 際 問 題 。 布 置 作 業(yè) 1、 導 學 與 演 練 p46頁 : 1-8題 ; 2、 探 究 與 演 練 p48頁 : 課 時 作 業(yè) :1-6題 。