SZ–250A型塑料注射成型機(jī)液壓系統(tǒng)設(shè)計(jì)-注塑機(jī)液壓系統(tǒng)含3張CAD圖
SZ–250A型塑料注射成型機(jī)液壓系統(tǒng)設(shè)計(jì)-注塑機(jī)液壓系統(tǒng)含3張CAD圖,SZ,250,塑料,注射,成型,液壓,系統(tǒng),設(shè)計(jì),注塑,CAD
IOP Conference Series: Materials Science and Engineering
PAPER ? OPEN ACCESS
Design and Vibration Analysis of Injection Moulding Machine Base Structure
To cite this article: CH Kesava Manikanta Kumar et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1128 012041
View the article online for updates and enhancements.
This content was downloaded from IP address 183.203.209.242 on 11/05/2021 at 13:29
IConACES 2020
IOP Conf. Series: Materials Science and Engineering
IOP Publishing
doi:10.1088/1757-899X/1128/1/012041
1128 (2021) 012041
Design and Vibration Analysis of Injection Moulding Machine Base Structure
CH Kesava Manikanta Kumar1, K Annamalai*2, S Vinoth kumar3, Ponraj A4
1 PG Student, School of Mechanical Engineering, VIT University, Chennai- 600127, India.
2 Professor, School of Mechanical Engineering, VIT University, Chennai-600127, India.
3 Mechanical Engineer, Chennai 600127, India.
4 Mechanical Engineer, Chennai-600127, India.
Email:
1 kesava4802@gmail.com
*2 kannamalai@vit.ac.in
3 bosrevs@gmail.com
4 ponraj.alagesan@gmail.com
Abstract. In this study the dynamic behaviour and vibration parameters of Injection Moulding Machine Base Structure was performed by analysing the structure numerically as well as experimentally. Modal analysis and FRF analysis performed numerically to find the mode pattern, natural frequencies and critical points. Vibration parameters are measured by performing experimentation using FFT analyser and the data was taken by using BK (Bruel & kjaer) Connect software. The Fast Fourier Transform (FFT) analyzer is used to transform the continuous time domain data to continuous frequency domain data. The experimental results show that structure is vibrating high at clamping unit location along x-direction. Vibration level can be controlled at that particular location by increasing the stiffness of the structure. Keywords: Modal and FRF Analysis, FFT analyser, BK Connect.
1. Introduction
Injection moulding is the cyclic process of producing plastic parts. Injection moulding machine consists of various units for performing several functions and all these units are mounted over the base frame. Base mainly consists of three frames. They are top frame, bottom frame and connecting vertical frame. All the frames are C-channel sections. Connecting vertical frame transfers weight and produced vibration to the bottom frame which is connected to the anti-vibration mount. During experimentation, Fast Fourier Transform (FFT) Analyzer is used for recording the data of vibration at differentconditions.
Mathes et al [1] this paper describes about vibration parameters of two-pole induction motor. The natural and forced vibration of motor are evaluated by numerical calculations using finite element approach and validated using experimental modal analysis. Forced vibrations are calculated when the motor is operated by convertor. By using FFT analyser frequency spectrum was analysed. Torres- Martinez R et al [2], This study includes static and dynamic analysis of high-speed machining Al-Cu alloy lathe bed. Vibration characteristics like deflection, natural frequencies and vibration amplitudes were calculated by performing simulations on FEM model. A cast iron bed was considered as a parametric model used in conventional speed machining. Deflection and natural frequencies of the
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1
IConACES 2020
IOP Conf. Series: Materials Science and Engineering
IOP Publishing
doi:10.1088/1757-899X/1128/1/012041
1128 (2021) 012041
machine structure was determined as per ISO starndards. This study concludes that Al-Cu alloy structure was more feasible than cast iron lathe bed. Jiao M et al [3], Evaluated dynamic and static characteristics of a large machine bed by using finite element analysis. Structural topology optimization was performed for the structure. Results showed that 8.58% of mass was reduced 7.41% of stiffness was improved. Static and dynamic properties are improved for the phase of design. Yang H et al [4], The author analysed CK61125 CNC lathe bed using FEA approach. Performed static and dynamic analysis on the lath bed and found maximum stress, strain and deformation as 100.98Mpa, 0.615 and 0.1455mm respectively. The natural frequencies of the lathe bed were obtained and results shows that 271.63 Hz, 290.41Hz and 305.88 Hz were first three resonant frequencies. Results shows that vibration characteristics of lathe bed gives strong theoretical parameters for the machine tool. Hong CC et al [5], the turning-milling CNC machine’s primary, secondary shafts and machine bed were analysed. They selected the maximum displacement and natural frequencies values as the basic data to design the CNC machine in safety condition for avoiding resonance. The natural frequencies, linear dynamic stresses and displacements of CNC machine are obtained by using the SOLIDWORKS simulation module.
2. Methodology:
In this study vibration analysis is performed both numerically and experimentally. Modal analysis is done and the behavior of the mode shapes are identified. Frequency Response Function analysis is performed by exciting the machine base with 1G acceleration and a frequency range of 0-100Hz. Experimentation is performed and the data is acquired using FFT analyser. By observing the results,the idea for reduction of vibration is suggested.
Figure 1. Methodology
3. Geometry:
Figure 2. Injection Moulding Machine Base Structure
11
4. Meshing:
The meshing of the geometry is done in Hyper mesh. Here the type of mesh used is Shell mesh with an element size of fifteen. After meshing, we need to ensure that the mesh of each component should not intersect and penetrate with another components. We need to check the quality index of the mesh generated. Here the weld connections are used for connecting the different components of the geometry.
Figure 3. Enlarged View of Mesh
Number of Elements: 86797 Material Properties:
All the properties of the material are assigned to each and every component along with their thickness values.
· Material: FE410
· Density: 7860 kg/m3
· Poisson’s Ratio: 0.285
· Young’s modulus: 210 GPa
· Weight of Injection unit: 1Tonne
· Weight of Clamping unit: 3Tonne
5. Boundary Conditions:
· Eight mounting points are restricted in all DOF.
· Frequency range: 0-200 Hz.
· Excited Acceleration: 1G (For FRF).
· The injection and clamping unit masses are laid through their CG points on the base.
Figure 4. Wire Frame Modal Showing Constraints
6. Results:
6.1 Modal Analysis Results:
Modal analysis is done and the natural frequencies are obtained and from this modal analysis the behaviour is identified from its mode shapes.
Figure 5. Mode No.1
From Figure.5, the type of mode is lateral mode along X-axis at frequency 12.49 Hz.
Figure 6. Mode No.2
From Figure.6, the type of mode is mixed mode along X & Y-axis at frequency 24.38 Hz.
Figure 7. Mode No.3
From Figure.7, the type of mode is bending mode along Z-axis at frequency 43.99 Hz.
Figure 8. Mode No.4
From Figure.8, the type of mode is vertical mode along Y-axis at frequency 54.76 Hz.
Table. 1 Types of Modes
Operating Frequency – 41.66Hz
6.2 Frequency Response Analysis (FRF):
The Frequency response analysis is done and the critical points are identified shown in Figure 9. In X-Direction the peak values are observed at point 3 and 10 with frequency 44Hz. (Figure.10) In Y-Direction the peak values are observed at point 3 and 19 with frequency 44Hz. (Figure.11)
In Z-Direction the peak values are observed at point 15 with frequency 24Hz and 4, 19 with frequency 12Hz (Figure.12)
Figure 9. Critical Points of FRF Analysis
Figure. 9, shows the critical points of the model in FRF analysis The responses of the structure are captured at these critical points by exciting the structure with 1G acceleration.
Figure. 10. Acceleration Vs Frequency (X-Direction)
Fig. 11. Acceleration Vs Frequency (Y-Direction)
Figure. 12 Acceleration Vs Frequency (Z-Direction)
7. Experimentation Set Up:
The Experimentation is done and the values are recorded at the critical points attained from FRF analysis. Here the FFT analyser and BK connect software are used for recording and analysing the experimental data.
Figure 13. Experimental Setup
Figure 14. Injection Moulding Machine with Experimental Setup
Figure 15. Data Acquisition System
Figure 16. Measuring Point
7.1 Experimental Results:
Figure 17. Acceleration Graph in X-Direction
8. Conclusion:
Figure 18. Acceleration Graph in Y-Direction
Figure19. Acceleration Graph in Z-Direction
Table 2. Experimental Results of All Points
From the experimental results, the acceleration values in X-Direction are observed high at point 19 i.e.,
5.42 m/s2. In Y-Direction, the highest acceleration value is observed at point 15 i.e., 0.98 m/s2. In Z- Direction, the highest acceleration value is observed at point 15 i.e., 0.73 m/s2. The acceleration values in both Y and Z-Directions are less than 1 m/s2, but when compared to these directions the acceleration value in X-Direction is very high. So, the maximum vibration is producing at the point 19. The vibration
amplitude at that particular location in the structure can be reduced by introducing ribs which serves as support and increases stiffness of the structure.
References
[1] Mathes S, Werner U, Bauer C, Numerical and experimental vibration analysis of a two-pole induction motor mounted on an elastic machine test bed.
[2] Torres-Martinez R, Urriolagoitia-Calderón G, Urriolagoitia-Sosa G and Espinoza-Bustos R, Stress and vibration analysis of a lathe bed made of aluminum-copper alloy for high speed machining. In Applied Mechanics and Materials 2009 (Vol. 15, pp. 81-88). Trans Tech Publications Ltd.
[3] Jiao M, Guo XH, Wan DD l Finite element analysis and lightweight research on the bed of a large machine tool based on HyperWorks. In Applied Mechanics and Materials 2012 (Vol. 121, pp. 3294-3298). Trans Tech Publications Ltd.
[4] Yang H, Zhao R, Li W, Yang C, Zhen L, Static and dynamic characteristics modeling for CK61125 CNC lathe bed basing on FEM. Procedia engineering. (2017 Jan 1;174:489-96.)
[5] Hong CC, Chang CL, Lin CY Dynamic Structu`ral Analysis of Great Five-axis Turning-Milling Complex CNC Machine. Global Journal of Research in Engineering. 2017 Jul 31.
[6] Zhang YW, Zhang WM Analysis of Dynamics Characters of Bed Structure of CNC Machine Tool on FEM Method. In Applied Mechanics and Materials 2012 (Vol. 141, pp. 208-211). Trans Tech Publications Ltd
[7] Swami BM, Kumar KS, Ramakrishna CH. Design and Structural Analysis Of CNC Vertical Milling Machine Bed. International Journal of Advanced Engineering Technology. (2012;3(4):97-100).
[8] Li X, Zhao Z. Dynamic analysis on and optimized design of the BED structure of CNC machine. In2011 Chinese Control and Decision Conference (CCDC) 2011 May 23 (pp. 3998-4002). IEEE.
Selvakumar A, Ganesan K, Mohanram PV Dynamic analysis on fabricated mineral cast lathe bed. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. (2013 Feb;227(2):261-6.
IOP會(huì)議系列:材料科學(xué)與工程
?開放獲取
注塑機(jī)底座結(jié)構(gòu)設(shè)計(jì)與振動(dòng)分析
引用本文:CH Kesava Manikanta Kumar et al 2021 IOP Conf. Ser。:母親??茖W(xué)。012041年于1128年拍攝。
查看在線文章以獲得更新和增強(qiáng)。
此內(nèi)容在11/05/2021 13:29從IP地址183.203.209.242下載
IConACES 2020
IOP Conf. Series: Materials Science and Engineering
IOP Publishing
doi:10.1088/1757-899X/1128/1/012041
1128 (2021) 012041
注塑機(jī)底座結(jié)構(gòu)設(shè)計(jì)與振動(dòng)分析
CH Kesava Manikanta Kumar1K Annamalai *2, S Vinoth kumar3Ponraj,:一個(gè)4
1 VIT大學(xué)機(jī)械工程學(xué)院研究生,印度金奈- 600127。
2 VIT大學(xué)機(jī)械工程學(xué)院教授,印度金奈600127。
3 機(jī)械工程師,印度金奈600127。
4 機(jī)械工程師,印度金奈600127。
電子郵件:
1 kesava4802@gmail.com
*2 kannamalai@vit.ac.in
3 bosrevs@gmail.com
4 ponraj.alagesan@gmail.com
摘要通過對(duì)注塑機(jī)底座結(jié)構(gòu)的數(shù)值分析和實(shí)驗(yàn)分析,研究了注塑機(jī)底座結(jié)構(gòu)的動(dòng)態(tài)特性和振動(dòng)參數(shù)。用數(shù)值方法進(jìn)行模態(tài)分析和頻響分析,以找出模態(tài)模式、固有頻率和臨界點(diǎn)。利用FFT分析儀進(jìn)行實(shí)驗(yàn)測(cè)量振動(dòng)參數(shù),數(shù)據(jù)由BK (Bruel & kjaer) Connect軟件獲取。采用快速傅里葉變換(FFT)分析儀將連續(xù)時(shí)域數(shù)據(jù)轉(zhuǎn)換為連續(xù)頻域數(shù)據(jù)。實(shí)驗(yàn)結(jié)果表明,夾緊裝置位置沿x方向振動(dòng)較大。通過增加結(jié)構(gòu)的剛度,可以在特定位置控制振動(dòng)水平。關(guān)鍵詞:模態(tài)和頻響分析FFT分析儀BK Connect
9. 介紹
注射成型是生產(chǎn)塑料零件的循環(huán)過程。注塑機(jī)由執(zhí)行若干功能的各種單元組成,所有這些單元都安裝在基礎(chǔ)框架上。底座主要由三個(gè)框架組成。它們是頂框、底框和連接垂直框。所有的框架都是c通道截面。連接垂直框架將重量和產(chǎn)生的振動(dòng)轉(zhuǎn)移到與防振座連接的底部框架上。在實(shí)驗(yàn)過程中,采用快速傅里葉變換(FFT)分析儀記錄不同條件下的振動(dòng)數(shù)據(jù)。
本文描述了雙極感應(yīng)電動(dòng)機(jī)的振動(dòng)參數(shù)。采用有限元方法對(duì)電機(jī)的固有振動(dòng)和強(qiáng)迫振動(dòng)進(jìn)行了數(shù)值計(jì)算,并用實(shí)驗(yàn)?zāi)B(tài)分析進(jìn)行了驗(yàn)證。計(jì)算了電機(jī)在換流器作用下的強(qiáng)迫振動(dòng)。利用FFT分析儀對(duì)頻譜進(jìn)行了分析。托雷斯-馬丁內(nèi)斯R等人[2],本研究包括高速加工鋁銅合金床床的靜態(tài)和動(dòng)態(tài)分析。對(duì)有限元模型進(jìn)行了仿真,計(jì)算了振動(dòng)特性如撓度、固有頻率和振動(dòng)幅值。將鑄鐵床身作為傳統(tǒng)高速加工的參數(shù)模型。撓度和固有頻率
本作品的內(nèi)容可以在知識(shí)共享署名3.0許可的條款下使用。本著作的任何進(jìn)一步分發(fā)都必須注明作者、著作名稱、期刊引用和DOI。
由IOP出版有限公司授權(quán)出版 1
IConACES 2020
IOP Conf. Series: Materials Science and Engineering
IOP Publishing
doi:10.1088/1757-899X/1128/1/012041
1128 (2021) 012041
機(jī)器結(jié)構(gòu)根據(jù)ISO標(biāo)準(zhǔn)確定。研究結(jié)果表明,鋁銅合金結(jié)構(gòu)比鑄鐵床身結(jié)構(gòu)更可行。采用有限元法對(duì)某大型機(jī)床的動(dòng)靜態(tài)特性進(jìn)行了評(píng)價(jià)。對(duì)結(jié)構(gòu)進(jìn)行了拓?fù)鋬?yōu)化。結(jié)果表明:8.58%的質(zhì)量降低了,7.41%的剛度改善了。在設(shè)計(jì)階段,靜態(tài)和動(dòng)態(tài)性能得到了改善。作者對(duì)CK61125數(shù)控床身進(jìn)行了有限元分析。對(duì)板條床進(jìn)行靜態(tài)和動(dòng)態(tài)分析,最大應(yīng)力為100.98Mpa,最大應(yīng)變?yōu)?.615,最大變形為0.1455mm。結(jié)果表明,前3個(gè)共振頻率分別為271.63 Hz、290.41Hz和305.88 Hz;結(jié)果表明,床身振動(dòng)特性為機(jī)床提供了較強(qiáng)的理論參數(shù)。對(duì)車銑數(shù)控機(jī)床的一、二軸和床身進(jìn)行了分析。他們選擇了最大位移和固有頻率值作為基礎(chǔ)數(shù)據(jù),在安全的條件下設(shè)計(jì)數(shù)控機(jī)床,避免共振。利用SOLIDWORKS仿真模塊獲得數(shù)控機(jī)床的固有頻率、線性動(dòng)應(yīng)力和位移。
10. 方法:
在本研究中,對(duì)振動(dòng)進(jìn)行了數(shù)值和實(shí)驗(yàn)分析。進(jìn)行模態(tài)分析,識(shí)別模態(tài)振型的行為。以1G加速度激勵(lì)機(jī)座,頻率范圍為0-100Hz,進(jìn)行頻響函數(shù)分析。采用FFT分析儀進(jìn)行了實(shí)驗(yàn),并獲得了實(shí)驗(yàn)數(shù)據(jù)。通過對(duì)試驗(yàn)結(jié)果的觀察,提出了減振的思路。
圖1所示。方法
11. 幾何:
圖2。注塑機(jī)底座結(jié)構(gòu)
9
12. 網(wǎng)格:
幾何的網(wǎng)格劃分是在Hyper網(wǎng)格中完成的。這里使用的網(wǎng)格類型是Shell網(wǎng)格,元素大小為15。網(wǎng)格劃分后,我們需要確保每個(gè)組件的網(wǎng)格不與其他組件相交和穿透。我們需要檢查生成的網(wǎng)格的質(zhì)量指數(shù)。這里的焊接連接用于連接幾何形狀的不同組件。
圖3。網(wǎng)格放大視圖
元素?cái)?shù)量:86797
材料的所有屬性都分配給了每個(gè)組件,以及它們的厚度值。
· 材料:FE410
· 密度:7860公斤/米3
· 泊松比:0.285
· 楊氏模量:210 GPa
· 噴油裝置重量:1噸
· 夾緊裝置重量:3噸
13. 邊界條件:
· 8個(gè)安裝點(diǎn)在所有DOF限制。
· 頻率范圍:0 ~ 200hz。
· 激發(fā)加速度:1G (FRF)。
· 注射和夾緊單元的質(zhì)量是通過他們的CG點(diǎn)在基礎(chǔ)上鋪設(shè)。
圖4。線框模態(tài)顯示約束
14. 結(jié)果:
6.3 模態(tài)分析結(jié)果:
進(jìn)行模態(tài)分析,得到固有頻率,并從模態(tài)分析中識(shí)別其模態(tài)振型。
圖5。模式1號(hào)
由圖5可知,振型為頻率12.49 Hz沿x軸的橫向振型。
圖6。模式2
從圖6可以看出,頻率為24.38 Hz,沿X軸和y軸的模態(tài)類型為混合模態(tài)。
圖7。模式3號(hào)
由圖7可知,模態(tài)類型為頻率43.99 Hz沿z軸彎曲模態(tài)。
圖8。模式4
由圖8可知,模態(tài)類型為頻率為54.76 Hz沿y軸的垂直模態(tài)。
表1模式類型
工作頻率:41.66Hz
6.4 頻響分析(FRF)
完成頻率響應(yīng)分析,并確定臨界點(diǎn),如圖9所示。在x方向上,峰值出現(xiàn)在點(diǎn)3和點(diǎn)10,頻率為44Hz。(圖10)y方向上,峰值出現(xiàn)在點(diǎn)3和點(diǎn)19,頻率為44Hz。(Figure.11)
在z方向上,頻率為24Hz的點(diǎn)15和頻率為12Hz的點(diǎn)4,19均有峰值(圖12)。
圖9。頻響分析的臨界點(diǎn)
圖9為頻動(dòng)函數(shù)分析中模型的臨界點(diǎn)。通過對(duì)結(jié)構(gòu)進(jìn)行1G加速度的激勵(lì),在這些臨界點(diǎn)處獲得了結(jié)構(gòu)的響應(yīng)。
圖10。加速度Vs頻率(x方向)
圖11所示。加速度Vs頻率(y方向)
圖12加速度Vs頻率(z方向)
15. 實(shí)驗(yàn)設(shè)置:
進(jìn)行了實(shí)驗(yàn),并記錄了頻響分析得到的臨界點(diǎn)處的數(shù)值。在這里,F(xiàn)FT分析儀和BK連接軟件用于記錄和分析實(shí)驗(yàn)數(shù)據(jù)。
圖13。實(shí)驗(yàn)裝置
圖14。注射成型機(jī)與實(shí)驗(yàn)裝置
圖15。數(shù)據(jù)采集系統(tǒng)
圖16。測(cè)點(diǎn)
7.1實(shí)驗(yàn)結(jié)果:
圖17。x方向的加速度圖
16. 結(jié)論:
圖18。y方向的加速度圖
Figure19。z方向加速度圖
表2。所有點(diǎn)的實(shí)驗(yàn)結(jié)果
從實(shí)驗(yàn)結(jié)果來看,在點(diǎn)19處x方向上的加速度值較高,即:
5.42米/秒2。在y方向,在點(diǎn)15處觀察到最大的加速度值,即。, 0.98 m / s2。在Z方向上,在點(diǎn)15處觀察到最大的加速度值。, 0.73 m / s2。Y方向和z方向的加速度值都小于1m /s2,但與這些方向相比,x方向的加速度值非常高。所以,最大的振動(dòng)產(chǎn)生在點(diǎn)19。振動(dòng)
在結(jié)構(gòu)中特定位置的振幅可以通過引入作為支撐和增加結(jié)構(gòu)剛度的肋來降低。
參考文獻(xiàn)
[9] 一種安裝在彈性機(jī)械試驗(yàn)臺(tái)上的雙極感應(yīng)電動(dòng)機(jī)的數(shù)值和實(shí)驗(yàn)振動(dòng)分析。
[10] Torres-Martinez R, Urriolagoitia-Calderón G, Urriolagoitia-Sosa G, Espinoza-Bustos R,高速加工用鋁銅合金床床的應(yīng)力和振動(dòng)分析。《應(yīng)用力學(xué)與材料》2009 (Vol. 15, pp. 81-88)。環(huán)球科技出版有限公司
[11] 1 .焦敏,郭曉華,萬德龍?;贖yperWorks的大型機(jī)床床身有限元分析及輕量化研究。應(yīng)用力學(xué)與材料,2012 (Vol. 121, pp. 3294-3298)。環(huán)球科技出版有限公司
[12] 楊輝,趙銳,李偉,楊超,鄭磊,基于有限元法的CK61125數(shù)控床床動(dòng)靜態(tài)特性建模。Procedia工程。(2017年1月1;174:489 - 96)。
[13] 關(guān)鍵詞:大型五軸車削復(fù)合數(shù)控機(jī)床,動(dòng)態(tài)結(jié)構(gòu),動(dòng)力學(xué)分析工程科學(xué)學(xué)報(bào),2017年7月31日。
[14] 基于有限元法的數(shù)控機(jī)床床身結(jié)構(gòu)動(dòng)力學(xué)特性分析。應(yīng)用力學(xué)與材料,2012 (Vol. 141, pp. 208-211)。Trans Tech Publications Ltd公司
[15] 關(guān)鍵詞:數(shù)控立式銑床;結(jié)構(gòu)分析;國(guó)際先進(jìn)工程技術(shù)雜志。(2012; 3(4): 97 - 100)。
[16] 數(shù)控機(jī)床床身結(jié)構(gòu)的動(dòng)態(tài)分析與優(yōu)化設(shè)計(jì)。2011中國(guó)控制與決策會(huì)議(CCDC) 2011年5月23日(pp. 3998-4002)。IEEE。
[17] 金屬鑄造床身的動(dòng)態(tài)分析。機(jī)械工程師學(xué)會(huì)學(xué)報(bào),B輯:工程制造學(xué)報(bào)。(2013年2月,227(2):261 - 6。
[18]
收藏