秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

高中數(shù)學 第一章 導數(shù)及其應用學業(yè)質(zhì)量標準檢測 新人教A版選修22

上傳人:仙*** 文檔編號:38206604 上傳時間:2021-11-06 格式:DOC 頁數(shù):10 大?。?49.50KB
收藏 版權申訴 舉報 下載
高中數(shù)學 第一章 導數(shù)及其應用學業(yè)質(zhì)量標準檢測 新人教A版選修22_第1頁
第1頁 / 共10頁
高中數(shù)學 第一章 導數(shù)及其應用學業(yè)質(zhì)量標準檢測 新人教A版選修22_第2頁
第2頁 / 共10頁
高中數(shù)學 第一章 導數(shù)及其應用學業(yè)質(zhì)量標準檢測 新人教A版選修22_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第一章 導數(shù)及其應用學業(yè)質(zhì)量標準檢測 新人教A版選修22》由會員分享,可在線閱讀,更多相關《高中數(shù)學 第一章 導數(shù)及其應用學業(yè)質(zhì)量標準檢測 新人教A版選修22(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第一章 學業(yè)質(zhì)量標準檢測 時間120分鐘,滿分150分. 一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中只有一個是符合題目要求的) 1.dx等于( B ) A.-2ln2       B.2ln2 C.-ln2 D.ln2 [解析] 因為(2lnx)′=, 所以 dx=2lnx|=2ln4-2ln2=2ln2. 2.曲線y=x3-3x2+1在點(1,-1)處的切線方程為( B ) A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5 [解析] ∵點(1,-1)在曲線上,y′=3x2-6x, ∴y′|x=1=

2、-3,即切線斜率為-3. ∴利用點斜式得,切線方程為y+1=-3(x-1),即y=-3x+2.故選B. 3.(2018全國卷Ⅰ文,6)設函數(shù)f(x)=x3+(a-1)x2+ax.若f(x)為奇函數(shù),則曲線y=f(x)在點(0,0)處的切線方程為( D ) A.y=-2x B.y=-x C.y=2x D.y=x [解析] ∵ f(x)=x3+(a-1)x2+ax, ∴ f′(x)=3x2+2(a-1)x+a. 又f(x)為奇函數(shù), ∴ f(-x)=-f(x)恒成立, 即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立, ∴ a=1,∴ f′(x)=3x2+

3、1, ∴ f′(0)=1, ∴ 曲線y=f(x)在點(0,0)處的切線方程為y=x. 故選D. 4.(2018青島高二檢測)下列函數(shù)中,x=0是其極值點的函數(shù)是( B ) A.f(x)=-x3 B.f(x)=-cosx C.f(x)=sinx-x D.f(x)= [解析] 對于A,f ′(x)=-3x2≤0恒成立,在R上單調(diào)遞減,沒有極值點;對于B,f ′(x)=sinx,當x∈(-π,0)時,f ′(x)<0,當x∈(0,π)時,f ′(x)>0,故f(x)=-cosx在x=0的左側(cè)區(qū)間(-π,0)內(nèi)單調(diào)遞減,在其右側(cè)區(qū)間(0,π)內(nèi)單調(diào)遞增,所以x=0是f(x)的一個極小

4、值點;對于C,f ′(x)=cosx-1≤0恒成立,在R上單調(diào)遞減,沒有極值點;對于D,f(x)=在x=0沒有定義,所以x=0不可能成為極值點,綜上可知,答案選B. 5.已知函數(shù)f(x)=x3+ax2+3x-9在x=-3時取得極值,則a=( D ) A.2    B.3     C.4     D.5 [解析] f ′(x)=3x2+2ax+3,由條件知,x=-3是方程f ′(x)=0的實數(shù)根,∴a=5. 6.(2017浙江卷)函數(shù)y=f(x)的導函數(shù)y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( D ) [解析] 觀察導函數(shù)f′(x)的圖象可知,f′(x)

5、的函數(shù)值從左到右依次為小于0,大于0,小于0,大于0, ∴對應函數(shù)f(x)的增減性從左到右依次為減、增、減、增. 觀察選項可知,排除A,C. 如圖所示,f′(x)有3個零點,從左到右依次設為x1,x2,x3,且x1,x3是極小值點,x2是極大值點,且x2>0,故選項D確,故選D. 7.若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于( D ) A.2     B.3      C.6      D.9 [解析] ∵f ′(x)=12x2-2ax-2b, 又因為在x=1處有極值,∴a+b=6, ∵a>0,b>0,∴ab≤()2=9

6、, 當且僅當a=b=3時取等號, 所以ab的最大值等于9.故選D. 8.函數(shù)f(x)=ax3+ax2-2ax+1的圖象經(jīng)過四個象限,則實數(shù)a的取值范圍是( D ) A.- [解析] f ′(x)=ax2+ax-2a=a(x+2)(x-1), 要使函數(shù)f(x)的圖象經(jīng)過四個象限,則f(-2)f(1)<0, 即(a+1)(-a+1)<0,解得a<-或a>. 故選D. 9.(2018沈陽一模)設函數(shù)f(x)=xex+1,則( D ) A.x=1為f(x)的極大值點 B.x=1為f(x)的極小值點 C.x=-1為f(

7、x)的極大值點 D.x=-1為f(x)的極小值點 [解析] 由于f(x)=xex,可得f′(x)=(x+1)ex, 令f′(x)=(x+1)ex=0可得x=-1, 令f′(x)=(x+1)ex>0可得x>-1,即函數(shù)在(-1,+∞)上是增函數(shù) 令f′(x)=(x+1)ex<0可得x<-1,即函數(shù)在(-∞,-1)上是減函數(shù) 所以x=-1為f(x)的極小值點. 故選D. 10.(2017全國卷Ⅱ理,11)若x=-2是函數(shù)f(x)=(x2+ax-1)ex-1的極值點,則f(x)的極小值是( A ) A.-1 B.-2e-3 C.5e-3 D.1 [解析] 函數(shù)f(x)=

8、(x2+ax-1)ex-1 則f′(x)=(2x+a)ex-1+(x2+ax-1)ex-1 =ex-1[x2+(a+2)x+a-1]. 由x=-2是函數(shù)f(x)的極值點得 f′(-2)=e-3(4-2a-4+a-1)=(-a-1)e-3=0, 所以a=-1. 所以f(x)=(x2-x-1)ex-1,f′(x)=ex-1(x2+x-2). 由ex-1>0恒成立,得x=-2或x=1時,f′(x)=0, 且x<-2時,f′(x)>0;-21時,f′(x)>0. 所以x=1是函數(shù)f(x)的極小值點. 所以函數(shù)f(x)的極小值為f(1)=-1.

9、故選A. 11.已知函數(shù)f(x)=+xlnx,g(x)=x3-x2-5,若對任意的x1,x2∈,都有f(x1)-g(x2)≥2成立,則a的取值范圍是( B ) A.(0,+∞) B.[1,+∞) C.(-∞,0) D.(-∞,-1] [解析] 由于g(x)=x3-x2-5?g′(x)=3x2-2x=x(3x-2),∴函數(shù)g(x)在上單調(diào)遞減,在上單調(diào)遞增,g=--5=-,g(2)=8-4-5=-1.由于對?x1,x2∈,f(x1)-g(x2)≥2恒成立,∴f(x)≥[g(x)+2]max,即x∈時,f(x)≥1恒成立,即+xlnx≥1,在上恒成立,a≥x-x2lnx在上恒成立,令h

10、(x)=x-x2lnx,則h′(x)=1-2xlnx-x, 而h″(x)=-3-2lnx,x∈時,h″(x)<0, 所以h′(x)=1-2xlnx-x在單調(diào)遞減, 由于h′(1)=0,∴x∈時,h′(x)>0,x∈[1,2]時,h′(x)<0,所以h(x)≤h(1)-1,∴a≥1. 12.(2017全國卷Ⅲ理,11)已知函數(shù)f(x)=x2-2x+a(ex-1+e-x+1)有唯一零點,則a=( C ) A.- B. C. D.1 [解析] 方法1:f(x)=x2-2x+a(ex-1+e-x+1)=(x-1)2+a[ex-1+e-(x-1)]-1, 令t=x-1,則g(t)

11、=f(t+1)=t2+a(et+e-t)-1. ∵g(-t)=(-t)2+a(e-t+et)-1=g(t), ∴函數(shù)g(t)為偶函數(shù). ∵f(x)有唯一零點, ∴g(t)也有唯一零點. 又g(t)為偶函數(shù),由偶函數(shù)的性質(zhì)知g(0)=0, ∴2a-1=0,解得a=. 故選C. 方法2:f(x)=0?a(ex-1+e-x+1)=-x2+2x. ex-1+e-x+1≥2=2, 當且僅當x=1時取“=”. -x2+2x=-(x-1)2+1≤1,當且僅當x=1時取“=”. 若a>0,則a(ex-1+e-x+1)≥2a, 要使f(x)有唯一零點,則必有2a=1,即a=. 若a≤

12、0,則f(x)的零點不唯一. 故選C. 二、填空題(本大題共4個小題,每小題5分,共20分,把正確答案填在題中橫線上) 13.(2017南開區(qū)二模)已知f(x)=x(2016+lnx),f′(x0)=2017,則x0=1__. [解析] f′(x)=2016+lnx+1=2017+lnx 又∵f′(x0)=2017,∴f′(x0)=2017+lnx0=2017, 則lnx0=0,x0=1. 14.(2018海淀區(qū)校級期末)已知函數(shù)f(x)=x2-2lnx,則f(x)的最小值為1. [解析] 函數(shù)的定義域(0,+∞) f′(x)=2x-2== 令f′(x)≥0?x≥1; f′

13、(x)≤0?0<x≤1 所以函數(shù)在(0,1]單調(diào)遞減,在[1,+∞)單調(diào)遞增 所以函數(shù)在x=1時取得最小值,f(x)min=f(1)=1 故答案為1. 15.如圖陰影部分是由曲線y=、y2=x與直線x=2、y=0圍成,則其面積為+ln2. [解析] 由,得交點A(1,1) 由得交點B. 故所求面積S=dx+dx =x+lnx=+ln2. 16.(2018玉溪模擬)已知函數(shù)f(x)的定義域為[-1,5],部分對應值如下表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示,給出關于f(x)的下列命題: x -1 0 2 4 5 f(x) 1 2 0 2 1

14、 ①函數(shù)y=f(x)在x=2取到極小值; ②函數(shù)f(x)在[0,1]是減函數(shù),在[1,2]是增函數(shù); ③當1<a<2時,函數(shù)y=f(x)-a有4個零點; ④如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最小值為0. 其中所有正確命題是①③④(寫出正確命題的序號). [解析] 由圖象可知當-1<x<0,2<x<4時,f′(x)>0,此時函數(shù)單調(diào)遞增, 當0<x<2,4<x<5時,f′(x)<0,此時函數(shù)單調(diào)遞減, 所以當x=0或x=4時,函數(shù)取得極大值,當x=2時,函數(shù)取得極小值. 所以①正確. ②函數(shù)在[0,2]上單調(diào)遞減,所以②錯誤. ③因為x=0或x=4

15、時,函數(shù)取得極大值,當x=2時,函數(shù)取得極小值. 所以f(0)=2,f(4)=2,f(2)=0, 因為f(-1)=f(5)=1,所以由函數(shù)圖象可知當1<a<2時,函數(shù)y=f(x)-a有4個零點;正確. ④因為函數(shù)在[-1,0]上單調(diào)遞增,且函數(shù)的最大值為2, 所以要使當x∈[-1,t]時,f(x)的最大值是2,則t≥0即可,所以t的最小值為0,所以④正確. 故答案為①③④. 三、解答題(本大題共6個大題,共70分,解答應寫出文字說明,證明過程或演算步驟) 17.(本題滿分10分)(2018贛州二模)設函數(shù)f(x)=(x-1)2+alnx有兩個極值點x1,x2,且x1<x2.求實數(shù)

16、a的取值范圍. [解析] (1)因為f(x)=(x-1)2+alnx,∴f′(x)=2(x-1)+,(x>0) 即f′(x)=,令g(x)=2x2-2x+a,(x>0) 則(x1<x2)是方程2x2-2x+a=0的兩個正實根. 則,得00). (1)當a=1時,求f(x)的單調(diào)區(qū)間; (2)若f(x)在(0,1]上 的最大值為,求a的值. [解析] 函數(shù)f(x)的定義域為(0,2), f ′(x)=-+a, (1)當a=1時,f ′(x)=,∴當x∈(0,)時,f ′(x)>0,當x∈(,2

17、)時,f ′(x)<0,所以f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2); (2)當x∈(0,1]時,f ′(x)=+a>0, 即f(x)在(0,1]上單調(diào)遞增,故f(x)在(0,1]上的最大值為f(1)=a,因此a=. 19.(本題滿分12分)在曲線y=x2(x≥0)上某一點A處作一切線,使之與曲線以及x軸所圍成圖形的面積為,試求切點A的坐標及過切點A的切線方程. [解析] 如圖所示,設切點A(x0,y0),過切點A的切線與x軸的交點為C. 由y′=2x知A點處的切線方程為y-y0=2x0(x-x0),即y=2x0x-x.令y=0,得x=,即C(,0). 設由曲線y=

18、x2(x≥0)與過A點的切線及x軸所圍成圖形的面積為S, 則S=S曲邊△AOB-S△ABC. ∵S曲邊△AOB=∫x00x2dx=x3|x00=x, S△ABC=BCAB=(x0-)x=x, ∴S=x-x=x=,∴x0=1, ∴切點A的坐標為(1,1), 即過切點A的切線方程為2x-y-1=0. 20.(本題滿分12分)(2018和平區(qū)三模)設函數(shù)f(x)=lnx- ax2-bx. (1)當a=b=時,求函數(shù)f(x)的最大值; (2)令F(x)=f(x)+x2+bx+(0<x≤3),若其圖象上的任意點P(x0,y0)處切線的斜率k≤恒成立,求實數(shù)a的取值范圍. [解析] (

19、1)依題意,知f(x)的定義域為(0,+∞),當a=b=時,f(x)=lnx-x2-x,f′(x)=-x-= 令f′(x)=0,解得x=1.(∵x>0) 因為g(x)=0有唯一解,所以g(x2)=0,當0<x<1時,f′(x)>0,此時f(x)單調(diào)遞增; 當x>1時,f′(x)<0,此時f(x)單調(diào)遞減. 所以f(x)的極大值為f(1)=-,此即為最大值. (2)F(x)=lnx+,x∈(0,3],則有k≤F′(x0)=≤,在x0∈(0,3]上恒成立, 所以a≥(-x+x0)max,x0∈(0,3], 當x0=1時,-x+x0取得最大值,所以a≥. 21.(本題滿分12分)某工

20、廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關系: P=(其中c為小于6的正常數(shù)) (注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品) 已知每生產(chǎn)1萬件合格的儀器可盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量. (1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù). (2)當日產(chǎn)量為多少時,可獲得最大利潤? [解析] (1)當x>c時,P=, 所以T=x2-x1=0. 當1≤x≤c時,P=, 所以T=(1

21、-)x2-()x1=. 綜上,日盈利額T(萬元)與日產(chǎn)量x(萬件)的函數(shù)關系為:T= (2)由(1)知,當x>c時,每天的盈利額為0, 當1≤x≤c時,T′==, 令T′=0,解得x=3或x=9. 因為1

22、x. (1)討論f(x)的單調(diào)性; (2)若f(x)存在兩個極值點x1,x2, 證明:

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!