6、,3)
9.已知函數(shù)f(x)=有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.
[解析] 因?yàn)楹瘮?shù)f(x)有3個(gè)零點(diǎn),所以當(dāng)x>0時(shí),方程ax-3=0有解,故a>0,所以當(dāng)x≤0時(shí),需滿足即00).
(1)若y=g(x)-m有零點(diǎn),求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個(gè)相異實(shí)根.
圖(1)
[解] (1)作出g(x)=x+(x>0)的大致圖象如圖(1).
可知若使y=g(x)-m有零點(diǎn),則
7、只需m≥2e.
(2)若g(x)-f(x)=0有兩個(gè)相異實(shí)根,即g(x)與f(x)的圖象有兩個(gè)不同的交點(diǎn),
圖(2)
作出g(x)=x+(x>0)的大致圖象如圖(2).
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2.
∴其圖象的對(duì)稱軸為x=e,開(kāi)口向下,
最大值為m-1+e2.
故當(dāng)m-1+e2>2e,即m>-e2+2e+1時(shí),g(x)與f(x)有兩個(gè)交點(diǎn),即g(x)-f(x)=0有兩個(gè)相異實(shí)根.
∴m的取值范圍是(-e2+2e+1,+∞).
[能力提升]
11.(20xx云南昆明一模)設(shè)函數(shù)f(x)=ex+x-2,g(x)=lnx+x2-3.若函數(shù)
8、f(x),g(x)的零點(diǎn)分別為a,b,則有( )
A.g(a)<00,g(1)=-2<0,g(2)=ln2+1>0,所以a,b存在且唯一,且a∈(0,1),b∈(1,2),從而f(1)0,g(a)<0,即g(a)<0
9、任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的值是( )
A.n(n∈Z) B.2n(n∈Z)
C.2n或2n-(n∈Z) D.n或n-(n∈Z)
[解析] 依題意得,函數(shù)y=f(x)是周期為2的偶函數(shù),在[0,2)上,由圖象(圖略)易得,當(dāng)a=0或-時(shí),直線y=x+a與函數(shù)y=f(x)的圖象有兩個(gè)不同的公共點(diǎn),∵函數(shù)f(x)的周期為2,∴a的值為2n或2n-(n∈Z).
[答案] C
13.(20xx陜西省寶雞市高三一檢)設(shè)函數(shù)f(x)=若函數(shù)y=f(x)-k有且只有兩個(gè)零點(diǎn),則實(shí)數(shù)
10、k的取值范圍是________.
[解析] ∵當(dāng)x<1時(shí),2-x>;當(dāng)x≥1時(shí),log2x≥0,依題意函數(shù)y=f(x)的圖象和直線y=k的交點(diǎn)有兩個(gè),∴k>.
[答案]
14.(20xx云南省高三統(tǒng)一檢測(cè))已知y=f(x)是R上的偶函數(shù),對(duì)于任意的x∈R,均有f(x)=f(2-x),當(dāng)x∈[0,1]時(shí),f(x)=(x-1)2,則函數(shù)g(x)=f(x)-log20xx|x-1|的所有零點(diǎn)之和為_(kāi)_______.
[解析] 因?yàn)楹瘮?shù)f(x)是偶函數(shù),f(x)=f(2-x),所以f(x)=f(-x)=f(x+2),所以函數(shù)f(x)的周期為2,又當(dāng)x∈[0,1]時(shí),f(x)=(x-1)2,將
11、偶函數(shù)y=log20xx|x|的圖象向右平移一個(gè)單位長(zhǎng)度得到函數(shù)y=log20xx|x-1|的圖象,由此可在同一平面直角坐標(biāo)系下作函數(shù)y=f(x)與y=log20xx|x-1|的圖象(圖略),函數(shù)g(x)的零點(diǎn),即為函數(shù)y=f(x)與y=log20xx|x-1|圖象的交點(diǎn)的橫坐標(biāo),當(dāng)x>20xx時(shí),兩函數(shù)圖象無(wú)交點(diǎn),又兩函數(shù)圖象在[1,20xx]上有20xx個(gè)交點(diǎn),由對(duì)稱性知兩函數(shù)圖象在[-20xx,1]上也有20xx個(gè)交點(diǎn),且它們關(guān)于直線x=1對(duì)稱,所以函數(shù)g(x)的所有零點(diǎn)之和為4032.
[答案] 4032
15.(20xx煙臺(tái)模擬)已知二次函數(shù)f(x)=x2+(2a-1)x+1-2
12、a,
(1)判斷命題:“對(duì)于任意的a∈R,方程f(x)=1必有實(shí)數(shù)根”的真假,并寫(xiě)出判斷過(guò)程;
(2)若y=f(x)在區(qū)間(-1,0)及內(nèi)各有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
[解] (1)“對(duì)于任意的a∈R,方程f(x)=1必有實(shí)數(shù)根”是真命題.
依題意,f(x)=1有實(shí)根,即x2+(2a-1)x-2a=0有實(shí)根,因?yàn)棣ぃ?2a-1)2+8a=(2a+1)2≥0對(duì)于任意的a∈R恒成立,即x2+(2a-1)x-2a=0必有實(shí)根,從而f(x)=1必有實(shí)根.
(2)依題意,要使y=f(x)在區(qū)間(-1,0)及內(nèi)各有一個(gè)零點(diǎn),
只需即
解得
13、已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=-4lnx的零點(diǎn)個(gè)數(shù).
[解] (1)∵f(x)是二次函數(shù),且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R},
∴f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.
∴f(x)min=f(1)=-4a=-4,a=1.
故函數(shù)f(x)的解析式為f(x)=x2-2x-3.
(2)∵g(x)=-4lnx=x--4lnx-2(x>0),
∴g′(x)=1+-=.
令g′(x)=0,得x1=1,x2
14、=3.
當(dāng)x變化時(shí),g′(x),g(x)的取值變化情況如下:
x
(0,1)
1
(1,3)
3
(3,+∞)
g′(x)
+
0
-
0
+
g(x)
極大值
極小值
當(dāng)0
15、數(shù)”,現(xiàn)已知函數(shù)f(x)=ex-2+x-3與g(x)=x2-ax-x+4互為“零點(diǎn)密切函數(shù)”,則實(shí)數(shù)a的取值范圍是________.
[解析] 易知函數(shù)f(x)為增函數(shù),且f(2)=e2-2+2-3=0,所以函數(shù)f(x)=ex-2+x-3只有一個(gè)零點(diǎn)x=2,則取λ=2,由|2-μ|≤1,知1≤μ≤3.由f(x)與g(x)互為“零點(diǎn)密切函數(shù)”知函數(shù)g(x)=x2-ax-x+4在區(qū)間[1,3]內(nèi)有零點(diǎn),即方程x2-ax-x+4=0在[1,3]內(nèi)有解,所以a=x+-1,而函數(shù)a=x+-1在[1,2]上單調(diào)遞減,在[2,3]上單調(diào)遞增,所以當(dāng)x=2時(shí),a取最小值3,又當(dāng)x=1時(shí),a=4,當(dāng)x=3時(shí),a=,所以amax=4,所以實(shí)數(shù)a的取值范圍是[3,4].
[答案] [3,4]