《高三數學理一輪復習夯基提能作業(yè)本:第七章 不等式第三節(jié) 二元一次不等式組及簡單的線性規(guī)劃問題 Word版含解析》由會員分享,可在線閱讀,更多相關《高三數學理一輪復習夯基提能作業(yè)本:第七章 不等式第三節(jié) 二元一次不等式組及簡單的線性規(guī)劃問題 Word版含解析(7頁珍藏版)》請在裝配圖網上搜索。
1、
高考數學精品復習資料
2019.5
第三節(jié) 二元一次不等式(組)及簡單的線性規(guī)劃問題
A組 基礎題組
1.不等式(x-2y+1)(x+y-3)≤0在坐標平面內表示的區(qū)域(用陰影部分表示)應是( )
2.(20xx北京,7,5分)已知A(2,5),B(4,1).若點P(x,y)在線段AB上,則2x-y的最大值為( )
A.-1 B.3 C.7 D.8
3.已知實數x,y滿足則z=2x-2y-1的取值范圍是( )
A.53,
2、5 B.0,5] C.53,5 D.-53,5
4.已知不等式組表示的平面區(qū)域的面積為4,則z=2x+y的最大值為( )
A.4 B.6 C.8 D.12
5.某旅行社租用A、B兩種型號的客車安排900名客人旅行,A、B兩種車輛的載客量分別為36人和60人,租金分別為1600元/輛和2400元/輛,旅行社要求租車總數不超過21輛,且B型客車不多于A型客車7輛.則租金最少為( )
A.31200元 B.36000元
C.36800元 D.38400元
6.(20xx云南昆明七校調研)已知實數x,y滿足則z=x+3y的最小值為 .
7.(20xx江蘇,12,
3、5分)已知實數x,y滿足則x2+y2的取值范圍是 .
8.(20xx河南中原名校3月聯(lián)考)設x,y滿足不等式組若M=3x+y,N=12x-72,則M-N的最小值為 .
9.已知D是以點A(4,1),B(-1,-6),C(-3,2)為頂點的三角形區(qū)域(包括邊界),如圖所示.
(1)寫出表示區(qū)域D的不等式組;
(2)設點B(-1,-6),C(-3,2)在直線4x-3y-a=0的異側,求a的取值范圍.
10.(20xx陜西,18,12分)在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上.
4、
(1)若++=0,求||;
(2)設=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值.
B組 提升題組
11.設z=x+y,其中實數x,y滿足若z的最大值為12,則z的最小值為( )
A.-3 B.-6 C.3 D.6
12.(20xx黑龍江雞西一中月考)已知變量x,y滿足約束條件若z=x-2y的最大值與最小值分別為a,b,且方程x2-kx+1=0在區(qū)間(b,a)上有兩個不同實數解,則實數k的取值范圍是( )
A.(-6,-2) B.(-3,2) C.-103
5、,-2 D.-103,-3
13.(20xx浙江,13,4分)當實數x,y滿足時,1≤ax+y≤4恒成立,則實數a的取值范圍是 .
14.若實數x,y滿足不等式組則z=|x+2y-4|的最大值為 .
15.(20xx天津,16,13分)某化肥廠生產甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產1車皮甲種肥料和生產1車皮乙種肥料所需三種原料的噸數如下表所示:
原料
肥料
A
B
C
甲
4
8
3
乙
5
5
10
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎上生產甲、乙兩種肥料.已知生產1車皮甲種肥料,產生的
6、利潤為2萬元;生產1車皮乙種肥料,產生的利潤為3萬元.分別用x,y表示計劃生產甲、乙兩種肥料的車皮數.
(1)用x,y列出滿足生產條件的數學關系式,并畫出相應的平面區(qū)域;
(2)問分別生產甲、乙兩種肥料各多少車皮,能夠產生最大的利潤?并求出此最大利潤.
答案全解全析
A組 基礎題組
1.C (x-2y+1)(x+y-3)≤0?
或畫圖可知選C.
2.C 點P(x,y)在線段AB上且A(2,5),B(4,1),如圖:
設z=2x-y,則y=2x-z,
當直線y=2x-z經過點B(4,1)時,z取得最大值,最大值為24-1=7.
3.D 畫出不等式組所表示的區(qū)域,
7、如圖中陰影部分所示,可知213-223-1≤z<22-2(-1)-1,即z的取值范圍是-53,5.
4.B 如圖,a>0,不等式組對應的平面區(qū)域為△OBC及其內部,其中B(a,a),C(a,-a),
所以|BC|=2a,所以△OBC的面積為12a2a=a2=4,所以a=2.
由z=2x+y得y=-2x+z,平移直線y=-2x,由圖象可知當直線y=-2x+z經過點B時,直線的截距最大,此時z也最大,把B(2,2)代入z=2x+y得z=22+2=6,∴zmax=6.
5.C 設旅行社租用A型客車x輛,B型客車y輛,租金為z元,則約束條件為目標函數為z=1600x+2400y.
可
8、行解為圖中陰影部分(包括邊界)內的整點.
當目標函數z=1600x+2400y對應的直線經過點A(5,12)時,z取得最小值,zmin=16005+240012=36800.故租金最少為36800元,選C.
6.答案 -8
解析 依題意,在坐標平面內畫出不等式組表示的平面區(qū)域(圖略),當直線x+3y-z=0經過點(4,-4)時,目標函數z=x+3y取得最小值,為4+3(-4)=-8.
7.答案 45,13ZXXK]
解析 畫出不等式組表示的可行域,如圖:
由x-2y+4=0及3x-y-3=0得A(2,3),由x2+y2表示可行域內的點(x,y)與點(0,0)的距離的平方可得
9、(x2+y2)max=22+32=13,(x2+y2)min=d2=252=45,其中d表示點(0,0)到直線2x+y-2=0的距離,所以x2+y2的取值范圍為45,13.
8.答案 12
解析
作出不等式組所表示的平面區(qū)域,如圖中陰影部分所示,易求得A(-1,2),B(3,2),當直線3x+y-M=0經過點A(-1,2)時,目標函數M=3x+y取得最小值-1.又由平面區(qū)域知-1≤x≤3,所以函數N=12x-72在x=-1處取得最大值-32,由此可得M-N的最小值為-1--32=12.
9.解析 (1)直線AB,AC,BC的方程分別為7x-5y-23=0,x+7y-11=0,4x
10、+y+10=0.
原點(0,0)在區(qū)域D內,
故表示區(qū)域D的不等式組為
(2)根據題意有4(-1)-3(-6)-a]4(-3)-32-a]<0,即(14-a)(-18-a)<0,
解得-18
11、,∴(x,y)=(m+2n,2m+n),∴x=m+2n,y=2m+n,兩式相減得,m-n=y-x,
令y-x=t,由圖知,當直線y=x+t過點B(2,3)時,t取得最大值1,故m-n的最大值為1.
B組 提升題組
11.B 不等式組表示的可行域如圖中陰影部分所示:
由x-y=0,y=k得A(k,k),易知目標函數z=x+y在點A處取最大值,則12=k+k,故k=6,所以B(-12,6),又目標函數z=x+y在點B處取最小值,∴z的最小值為-6,故選B.
12.C 作出可行域,如圖中陰影部分所示,則目標函數z=x-2y在點(1,0)處取得最大值1,在點(-1,1)處取得最小值-
12、3,∴a=1,b=-3,從而可知方程x2-kx+1=0在區(qū)間(-3,1)上有兩個不同實數解.令f(x)=x2-kx+1,則f(-3)>0,f(1)>0,-30?-103
13、a≤-1,
即1≤a≤32.
14.答案 21
解析 作出不等式組表示的平面區(qū)域,如圖中陰影部分所示.
z=|x+2y-4|=|x+2y-4|55的幾何意義為陰影區(qū)域內的點到直線x+2y-4=0的距離的5倍.
由x-y+2=0,2x-y-5=0得B點坐標為(7,9),顯然點B到直線x+2y-4=0的距離最大,易得zmax=21.
15.解析 (1)由已知得,x,y滿足的數學關系式為該二元一次不等式組所表示的平面區(qū)域為圖1中的陰影部分:
圖1
(2)設利潤為z萬元,則目標函數為z=2x+3y.
考慮z=2x+3y,將它變形為y=-23x+z3,這是斜率為-23,隨z變化的一族平行直線.z3為直線在y軸上的截距,當z3取最大值時,z的值最大.又因為x,y滿足約束條件,所以由圖2可知,當直線z=2x+3y經過可行域上的點M時,截距z3最大,即z最大.
圖2
解方程組4x+5y=200,3x+10y=300,得點M的坐標為(20,24).
所以zmax=220+324=112.
答:生產甲種肥料20車皮、乙種肥料24車皮時利潤最大,且最大利潤為112萬元.