秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

高考數(shù)學(xué)文二輪專題復(fù)習(xí)習(xí)題:第1部分 專題二 函數(shù)、不等式、導(dǎo)數(shù) 123 Word版含答案

上傳人:仙*** 文檔編號:40261059 上傳時間:2021-11-15 格式:DOC 頁數(shù):5 大小:108.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)文二輪專題復(fù)習(xí)習(xí)題:第1部分 專題二 函數(shù)、不等式、導(dǎo)數(shù) 123 Word版含答案_第1頁
第1頁 / 共5頁
高考數(shù)學(xué)文二輪專題復(fù)習(xí)習(xí)題:第1部分 專題二 函數(shù)、不等式、導(dǎo)數(shù) 123 Word版含答案_第2頁
第2頁 / 共5頁
高考數(shù)學(xué)文二輪專題復(fù)習(xí)習(xí)題:第1部分 專題二 函數(shù)、不等式、導(dǎo)數(shù) 123 Word版含答案_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)文二輪專題復(fù)習(xí)習(xí)題:第1部分 專題二 函數(shù)、不等式、導(dǎo)數(shù) 123 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)文二輪專題復(fù)習(xí)習(xí)題:第1部分 專題二 函數(shù)、不等式、導(dǎo)數(shù) 123 Word版含答案(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 限時規(guī)范訓(xùn)練六 導(dǎo)數(shù)的簡單應(yīng)用 限時45分鐘,實際用時________ 分值81分,實際得分________  一、選擇題(本題共6小題,每小題5分,共30分) 1.設(shè)函數(shù)f(x)=-aln x,若f′(2)=3,則實數(shù)a的值為(  ) A.4          B.-4 C.2 D.-2 解析:選B.f′(x)=-,故f′(2)=-=3,因此a=-4. 2.曲線y=ex在點A處的切線與直線x-y+3=0平行,則點A的坐標為(  ) A.(-1,e-1) B.(0

2、,1) C.(1,e) D.(0,2) 解析:選B.設(shè)A(x0,e),y′=ex,∴y′|x=x0=e.由導(dǎo)數(shù)的幾何意義可知切線的斜率k=e. 由切線與直線x-y+3=0平行可得切線的斜率k=1. ∴e=1,∴x0=0,∴A(0,1).故選B. 3.若函數(shù)f(x)=x3-2cx2+x有極值點,則實數(shù)c的取值范圍為 (  ) A. B. C.∪ D.∪ 解析:選D.若函數(shù)f(x)=x3-2cx2+x有極值點,則f′(x)=3x2-4cx+1=0有兩根,故Δ=(-4c)2-12>0,從而c>或c<-. 4.已知f(x)=aln x+x2(a>0),若對任意兩個不等的正實數(shù)

3、x1,x2都有≥2恒成立,則實數(shù)a的取值范圍是(  ) A.[1,+∞) B.(1,+∞) C.(0,1) D.(0,1] 解析:選A.由條件可知在定義域上函數(shù)圖象的切線斜率大于等于2,所以函數(shù)的導(dǎo)數(shù)f′(x)=+x≥2.可得x=時,f′(x)有最小值2.∴a≥1. 5.若定義在R上的函數(shù)f(x)滿足f(0)=-1,其導(dǎo)函數(shù)f′(x)滿足f′(x)>k>1,則下列結(jié)論中一定錯誤的是(  ) A.f< B.f> C.f< D.f> 解析:選C.構(gòu)造函數(shù)g(x)=f(x)-kx+1, 則g′(x)=f′(x)-k>0,∴g(x)在R上為增函數(shù). ∵k>1,∴>0,

4、則g>g(0). 而g(0)=f(0)+1=0, ∴g=f-+1>0, 即f>-1=, 所以選項C錯誤,故選C. 6.函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當x∈(-∞,1)時,(x-1)f′(x)<0,設(shè)a=f(0),b=f,c=f(3),則(  ) A.a(chǎn)<b<c B.c<b<a C.c<a<b D.b<c<a 解析:選C.因為當x∈(-∞,1)時,(x-1)f′(x)<0,所以f′(x)>0,所以函數(shù)f(x)在(-∞,1)上是單調(diào)遞增函數(shù),所以a=f(0)<f=b,又f(x)=f(2-x),所以c=f(3)=f(-1),所以c=f(-1)<f(

5、0)=a,所以c<a<b,故選C. 二、填空題(本題共3小題,每小題5分,共15分) 7.(20xx·高考全國卷Ⅰ)曲線y=x2+在點(1,2)處的切線方程為________. 解析:∵y′=2x-,∴y′|x=1=1, 即曲線在點(1,2)處的切線的斜率k=1, ∴切線方程為y-2=x-1, 即x-y+1=0. 答案:x-y+1=0 8.已知函數(shù)f(x)=-x2-3x+4ln x在(t,t+1)上不單調(diào),則實數(shù)t的取值范圍是________. 解析:由題意得,f(x)的定義域為(0,+∞),∴t>0, ∴f′(x)=-x-3+=0在(t,t+1)上有解, ∴=

6、0在(t,t+1)上有解, ∴x2+3x-4=0在(t,t+1)上有解,由x2+3x-4=0得x=1或x=-4(舍去),∴1∈(t,t+1),∴t∈(0,1),故實數(shù)t的取值范圍是(0,1). 答案:(0,1) 9.已知函數(shù)f(x)=+ln x,若函數(shù)f(x)在[1,+∞)上為增函數(shù),則正實數(shù)a的取值范圍為________. 解析:∵f(x)=+ln x,∴f′(x)=(a>0). ∵函數(shù)f(x)在[1,+∞)上為增函數(shù),∴f′(x)=≥0在x∈[1,+∞)上恒成立,∴ax-1≥0在x∈[1,+∞)上恒成立,即a≥在x∈[1,+∞)上恒成立,∴a≥1. 答案:[1,+∞) 三、解

7、答題(本題共3小題,每小題12分,共36分) 10.(20xx·高考全國卷Ⅱ)設(shè)函數(shù)f(x)=(1-x2)ex. (1)討論f(x)的單調(diào)性; (2)當x≥0時,f(x)≤ax+1,求a的取值范圍. 解:(1)f′(x)=(1-2x-x2)ex. 令f′(x)=0得x=-1-或x=-1+. 當x∈(-∞,-1-)時,f′(x)<0; 當x∈(-1-,-1+)時,f′(x)>0; 當x∈(-1+,+∞)時,f′(x)<0. 所以f(x)在(-∞,-1-),(-1+,+∞)單調(diào)遞減,在(-1-,-1+)單調(diào)遞增. (2)f(x)=(1+x)(1-x)

8、ex. 當a≥1時,設(shè)函數(shù)h(x)=(1-x)ex,則h′(x)=-xex<0(x>0),因此h(x)在[0,+∞)單調(diào)遞減.而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1. 當0<a<1時,設(shè)函數(shù)g(x)=ex-x-1,則g′(x)=ex-1>0(x>0),所以g(x)在[0,+∞)單調(diào)遞增.而g(0)=0,故ex≥x+1. 當0<x<1時,f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,則x0∈(0,1),(1-x0)(1+x0)2-ax0-

9、1=0,故f(x0)>ax0+1. 當a≤0時,取x0=,則x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax0+1. 綜上,a的取值范圍是[1,+∞). 11.(20xx·河南鄭州質(zhì)量檢測)設(shè)函數(shù)f(x)=x2-mln x,g(x)=x2-(m+1)x. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)當m≥0時,討論函數(shù)f(x)與g(x)圖象的交點個數(shù). 解:(1)函數(shù)f(x)的定義域為(0,+∞),f′(x)=, 當m≤0時,f′(x)>0,所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,+∞),無單調(diào)遞減區(qū)間. 當m>0時,f′(x)=,當0<x<時

10、,f′(x)<0,函數(shù)f(x)單調(diào)遞減;當x>時,f′(x)>0,函數(shù)f(x)單調(diào)遞增. 綜上,當m≤0時,函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,+∞),無單調(diào)遞減區(qū)間;當m>0時,函數(shù)f(x)的單調(diào)遞增區(qū)間是(,+∞),單調(diào)遞減區(qū)間是(0,). (2)令F(x)=f(x)-g(x)=-x2+(m+1)x-mln x,x>0,問題等價于求函數(shù)F(x)的零點個數(shù), 當m=0時,F(xiàn)(x)=-x2+x,x>0,有唯一零點;當m≠0時,F(xiàn)′(x)=-, 當m=1時,F(xiàn)′(x)≤0,函數(shù)F(x)為減函數(shù),注意到F(1)=>0,F(xiàn)(4)=-ln 4<0,所以F(x)有唯一零點. 當m>1時,0<x<

11、1或x>m時,F(xiàn)′(x)<0;1<x<m時,F(xiàn)′(x)>0,所以函數(shù)F(x)在(0,1)和(m,+∞)上單調(diào)遞減,在(1,m)上單調(diào)遞增,注意到F(1)=m+>0, F(2m+2)=-mln(2m+2)<0,所以F(x)有唯一零點. 當0<m<1時,0<x<m或x>1時,F(xiàn)′(x)<0;m<x<1時,F(xiàn)′(x)>0, 所以函數(shù)F(x)在(0,m)和(1,+∞)上單調(diào)遞減,在(m,1)上單調(diào)遞增,易得ln m<0, 所以F(m)=(m+2-2ln m)>0,而F(2m+2)=-mln(2m+2)<0,所以F(x)有唯一零點. 綜上,函數(shù)F(x)有唯一零點,即兩函數(shù)圖象有一個交點. 1

12、2.(20xx·河南洛陽模擬)已知函數(shù)f(x)=ln x-,曲線y=f(x)在點處的切線平行于直線y=10x+1. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)設(shè)直線l為函數(shù)g(x)=ln x的圖象上任意一點A(x0,y0)處的切線,在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線h(x)=ex也相切?若存在,滿足條件的x0有幾個? 解:(1)∵函數(shù)f(x)=ln x-,∴f′(x)=+, ∵曲線y=f(x)在點處的切線平行于直線y=10x+1, ∴f′=2+8a=10,∴a=1,∴f′(x)=. ∵x>0且x≠1,∴f′(x)>0,∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1)

13、和(1,+∞). (2)存在且唯一,證明如下: ∵g(x)=ln x,∴切線l的方程為y-ln x0=(x-x0),即y=x+ln x0-1 ?、?, 設(shè)直線l與曲線h(x)=ex相切于點(x1,ex1), ∵h′(x)=ex,∴e=,∴x1=-ln x0, ∴直線l的方程也可以寫成y-=(x+ln x0), 即y=x++ ?、?, 由①②得ln x0-1=+,∴l(xiāng)n x0=. 證明:在區(qū)間(1,+∞)上x0存在且唯一. 由(1)可知,f(x)=ln x-在區(qū)間(1,+∞)上單調(diào)遞增, 又f(e)=-<0,f(e2)=>0, 結(jié)合零點存在性定理,說明方程f(x)=0必在區(qū)間(e,e2)上有唯一的根,這個根就是所求的唯一x0.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!