秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

高考數(shù)學文二輪專題復習習題:第1部分 專題二 函數(shù)、不等式、導數(shù) 124 Word版含答案

上傳人:仙*** 文檔編號:40261062 上傳時間:2021-11-15 格式:DOC 頁數(shù):7 大小:154.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學文二輪專題復習習題:第1部分 專題二 函數(shù)、不等式、導數(shù) 124 Word版含答案_第1頁
第1頁 / 共7頁
高考數(shù)學文二輪專題復習習題:第1部分 專題二 函數(shù)、不等式、導數(shù) 124 Word版含答案_第2頁
第2頁 / 共7頁
高考數(shù)學文二輪專題復習習題:第1部分 專題二 函數(shù)、不等式、導數(shù) 124 Word版含答案_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學文二輪專題復習習題:第1部分 專題二 函數(shù)、不等式、導數(shù) 124 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學文二輪專題復習習題:第1部分 專題二 函數(shù)、不等式、導數(shù) 124 Word版含答案(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學精品復習資料 2019.5 限時規(guī)范訓練七 導數(shù)的綜合應(yīng)用 限時40分鐘,實際用時________ 分值81分,實際得分________  一、選擇題(本題共6小題,每小題5分,共30分) 1.如果函數(shù)y=f(x)的導函數(shù)的圖象如圖所示,給出下列判斷: ①函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增; ②函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞減; ③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增; ④當x=2時,函數(shù)y=f(x)取極小值; ⑤當x=-時,函數(shù)y=f(x)取極大值. 則上述判斷中正確的是(  ) A.

2、①②         B.②③ C.③④⑤ D.③ 解析:選D.當x∈(-3,-2)時,f′(x)<0,f(x)單調(diào)遞減,①錯;當x∈時,f′(x)>0,f(x)單調(diào)遞增,當x∈(2,3)時,f′(x)<0,f(x)單調(diào)遞減,②錯;當x=2時,函數(shù)y=f(x)取極大值,④錯;當x=-時,函數(shù)y=f(x)無極值,⑤錯.故選D. 2.若函數(shù)f(x)=2x2-ln x在其定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是(  ) A.[1,+∞) B.[1,2) C. D. 解析:選C.f′(x)=4x-=, ∵x>0,由f′(x)=0得x=. ∴

3、令f′(x)>0,得x>;令f′(x)<0,得0<x<. 由題意得?1≤k<.故C正確. 3.已知函數(shù)f(x)(x∈R)滿足f′(x)>f(x),則(  ) A.f(2)<e2f(0) B.f(2)≤e2f(0) C.f(2)=e2f(0) D.f(2)>e2f(0) 解析:選D.由題意構(gòu)造函數(shù)g(x)=,則g′(x)=>0,則g(x)=在R上單調(diào)遞增,則有g(shù)(2)>g(0),故f(2)>e2f(0). 4.不等式ex-x>ax的解集為P,且[0,2]?P,則實數(shù)a的取值范圍是(  ) A.(-∞,e-1) B.(e-1,+∞) C.(-∞,e+1) D.(e+1,

4、+∞) 解析:選A.由題意知不等式ex-x>ax在區(qū)間[0,2]上恒成立,當x=0時,不等式顯然成立,當x≠0時,只需a<-1恒成立,令f(x)=-1,f′(x)=,顯然函數(shù)在區(qū)間(0,1]上單調(diào)遞減,在區(qū)間[1,2]上單調(diào)遞增,所以當x=1時,f(x)取得最小值e-1,則a<e-1,故選A. 5.設(shè)函數(shù)f(x)=ln x,g(x)=ax+,它們的圖象在x軸上的公共點處有公切線,則當x>1時,f(x)與g(x)的大小關(guān)系是(  ) A.f(x)>g(x) B.f(x)<g(x) C.f(x)=g(x) D.f(x)與g(x)的大小關(guān)系不確定 解析:選B.由題意得f(x)與x軸的交

5、點(1,0)在g(x)上,所以a+b=0,因為函數(shù)f(x),g(x)的圖象在此公共點處有公切線,所以f(x),g(x)在此公共點處的導數(shù)相等,f′(x)=,g′(x)=a-,以上兩式在x=1時相等,即1=a-b,又a+b=0,所以a=,b=-,即g(x)=-,f(x)=ln x,令h(x)=f(x)-g(x)=ln x-+,則h′(x)=--==-,因為x>1,所以h′(x)<0,所以h(x)在(1,+∞)上單調(diào)遞減,所以h(x)<h(1)=0,所以f(x)<g(x).故選B. 6.設(shè)函數(shù)f(x)=ax3-x+1(x∈R),若對于任意x∈[-1,1]都有f(x)≥0,則實數(shù)a的取值范圍為( 

6、 ) A.(-∞,2] B.[0,+∞) C.[0,2] D.[1,2] 解析:選C.∵f(x)=ax3-x+1,∴f′(x)=3ax2-1, 當a<0時,f′(x)=3ax2-1<0,f(x)在[-1,1]上單調(diào)遞減, f(x)min=f(1)=a<0,不符合題意. 當a=0時,f(x)=-x+1,f(x)在[-1,1]上單調(diào)遞減,f(x)min=f(1)=0,符合題意. 當a>0時,由f′(x)=3ax2-1≥0,得x≥或x≤-,當0<<1,即a>時,f(x)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增, ∴,∴, ∴<a≤2; 當≥1,即0<a≤時,f(x)在[-

7、1,1]上單調(diào)遞減, f(x)min=f(1)=a>0,符合題意. 綜上可得,0≤a≤2. 二、填空題(本題共3小題,每小題5分,共15分) 7.已知y=f(x)為R上的連續(xù)可導函數(shù),且xf′(x)+f(x)>0,則函數(shù)g(x)=xf(x)+1(x>0)的零點個數(shù)為________. 解析:因為g(x)=xf(x)+1(x>0),g′(x)=xf′(x)+f(x)>0,所以g(x)在(0,+∞)上單調(diào)遞增,又g(0)=1,y=f(x)為R上的連續(xù)可導函數(shù),所以g(x)為(0,+∞)上的連續(xù)可導函數(shù),又g(x)>g(0)=1,所以g(x)在(0,+∞)上無零點. 答案:0 8.在函

8、數(shù)f(x)=aln x+(x+1)2(x>0)的圖象上任取兩個不同點P(x1,y1),Q(x2,y2),總能使得f(x1)-f(x2)≥4(x1-x2),則實數(shù)a的取值范圍為________. 解析:不妨設(shè)x1>x2,則x1-x2>0,∵f(x1)-f(x2)≥4(x1-x2),∴≥4, ∵f(x)=aln x+(x+1)2(x>0) ∴f′(x)=+2(x+1),∴+2(x+1)≥4,∴a≥-2x2+2x,又-2x2+2x=-22+≤,∴a≥. 答案:a≥ 9.設(shè)函數(shù)y=f(x)圖象上任意一點(x0,y0)處的切線方程為y-y0=(3x-6x0)(x-x0),且f(3)=0,則不等

9、式≥0的解集為________. 解析:∵函數(shù)y=f(x)圖象上任意一點(x0,y0)處的切線方程為y-y0=(3x-6x0)(x-x0),∴f′(x0)=3x-6x0,∴f′(x)=3x2-6x,設(shè)f(x)=x3-3x2+c,又f(3)=0,∴33-332+c=0,解得c=0,∴f(x)=x3-3x2, ∴≥0可化為≥0,解得0<x≤1或x<0或x>3. 答案:(-∞,0)∪(0,1]∪(3,+∞) 三、解答題(本題共3小題,每小題12分,共36分) 10.設(shè)函數(shù)f(x)=x3+ax2+bx+c. (1)求曲線y=f(x)在點(0,f(0))處的切線方程; (2)設(shè)a=b=4.

10、若函數(shù)f(x)有三個不同零點,求c的取值范圍. 解:(1)由f(x)=x3+ax2+bx+c,得 f′(x)=3x2+2ax+b. 因為f(0)=c,f′(0)=b, 所以曲線y=f(x)在點(0,f(0))處的切線方程為y=bx+c. (2)當a=b=4時,f(x)=x3+4x2+4x+c, 所以f′(x)=3x2+8x+4. 令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-. f(x)與f′(x)在區(qū)間(-∞,+∞)上的情況如下: x (-∞,-2) -2 - f′(x) + 0 - 0 + f(x)  c  c-

11、 所以,當c>0且c-<0時,存在x1∈(-4,-2),x2∈,x3∈,使得f(x1)=f(x2)=f(x3)=0. 由f(x)的單調(diào)性知,當且僅當c∈時,函數(shù)f(x)=x3+4x2+4x+c有三個不同零點. 11.(20xx高考天津卷)設(shè)a,b∈R,|a|≤1.已知函數(shù)f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x). (1)求f(x)的單調(diào)區(qū)間. (2)已知函數(shù)y=g(x)和y=ex的圖象在公共點(x0,y0)處有相同的切線, ①求證:f(x)在x=x0處的導數(shù)等于0; ②若關(guān)于x的不等式g(x)≤ex在區(qū)間[x0-1,x0+1]上恒成立,求b的取值范圍

12、. 解:(1)由f(x)=x3-6x2-3a(a-4)x+b,可得 f′(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)]. 令f′(x)=0,解得x=a或x=4-a. 由|a|≤1,得a<4-a. 當x變化時,f′(x),f(x)的變化情況如下表: x (-∞,a) (a,4-a) (4-a,+∞) f′(x) + - + f(x)    所以,f(x)的單調(diào)遞增區(qū)間為(-∞,a),(4-a,+∞),單調(diào)遞減區(qū)間為(a,4-a). (2)①證明:因為g′(x)=ex(f(x)+f′(x)), 由題意知 所以, 解得所以,f

13、(x)在x=x0處的導數(shù)等于0. ②因為g(x)≤ex,x∈[x0-1,x0+1],且ex>0, 所以f(x)≤1. 又因為f(x0)=1,f′(x0)=0, 所以x0為f(x)的極大值點,由(1)知x0=a. 另一方面,由于|a|≤1,故a+1<4-a. 由(1)知f(x)在(a-1,a)內(nèi)單調(diào)遞增,在(a,a+1)內(nèi)單調(diào)遞減,故當x0=a時,f(x)≤f(a)=1在[a-1,a+1]上恒成立, 從而g(x)≤ex在[x0-1,x0+1]上恒成立. 由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1≤a≤1. 令t(x)=2a3-6x2+1,

14、x∈[-1,1],所以t′(x)=6x2-12x. 令t′(x)=0,解得x=2(舍去)或x=0. 因為t(-1)=-7,t(1)=-3,t(0)=1, 所以,t(x)的值域為[-7,1]. 所以,b的取值范圍是[-7,1]. 12.設(shè)函數(shù)f(x)=ln x+,m∈R. (1)當m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值; (2)討論函數(shù)g(x)=f′(x)-零點的個數(shù); (3)若對任意b>a>0,<1恒成立,求m的取值范圍. 解:(1)由題設(shè),當m=e時,f(x)=ln x+,則f′(x)=, ∴當x∈(0,e)時,f′(x)<0,f(x)在(0,e)上單調(diào)遞減,

15、 當x∈(e,+∞)時,f′(x)>0,f(x)在(e,+∞)上單調(diào)遞增, ∴x=e時,f(x)取得極小值f(e)=ln e+=2, ∴f(x)的極小值為2. (2)由題設(shè)g(x)=f′(x)-=--(x>0), 令g(x)=0,得m=-x3+x(x>0). 設(shè)φ(x)=-x3+x(x≥0), 則φ′(x)=-x2+1=-(x-1)(x+1), 當x∈(0,1)時,φ′(x)>0,φ(x)在(0,1)上單調(diào)遞增; 當x∈(1,+∞)時,φ′(x)<0,φ(x)在(1,+∞)上單調(diào)遞減. ∴x=1是φ(x)的唯一極值點,且是極大值點,因此x=1也是φ(x)的最大值點, ∴φ

16、(x)的最大值為φ(1)=. 又φ(0)=0,結(jié)合y=φ(x)的圖象(如圖),可知 ①當m>時,函數(shù)g(x)無零點; ②當m=時,函數(shù)g(x)有且只有一個零點; ③當0<m<時,函數(shù)g(x)有兩個零點; ④當m≤0時,函數(shù)g(x)有且只有一個零點. 綜上所述,當m>時,函數(shù)g(x)無零點; 當m=或m≤0時,函數(shù)g(x)有且只有一個零點; 當0<m<時,函數(shù)g(x)有兩個零點. (3)對任意的b>a>0,<1恒成立, 等價于f(b)-b<f(a)-a恒成立.(*) 設(shè)h(x)=f(x)-x=ln x+-x(x>0), ∴(*)等價于h(x)在(0,+∞)上單調(diào)遞減. 由h′(x)=--1≤0在(0,+∞)上恒成立, 得m≥-x2+x=-2+(x>0)恒成立, ∴m≥(對m=,h′(x)=0僅在x=時成立), ∴m的取值范圍是.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!