秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

新課標高三數(shù)學(xué)一輪復(fù)習 第11篇 復(fù)數(shù)的概念與運算學(xué)案 理

上傳人:仙*** 文檔編號:40482844 上傳時間:2021-11-16 格式:DOC 頁數(shù):12 大?。?38.50KB
收藏 版權(quán)申訴 舉報 下載
新課標高三數(shù)學(xué)一輪復(fù)習 第11篇 復(fù)數(shù)的概念與運算學(xué)案 理_第1頁
第1頁 / 共12頁
新課標高三數(shù)學(xué)一輪復(fù)習 第11篇 復(fù)數(shù)的概念與運算學(xué)案 理_第2頁
第2頁 / 共12頁
新課標高三數(shù)學(xué)一輪復(fù)習 第11篇 復(fù)數(shù)的概念與運算學(xué)案 理_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新課標高三數(shù)學(xué)一輪復(fù)習 第11篇 復(fù)數(shù)的概念與運算學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《新課標高三數(shù)學(xué)一輪復(fù)習 第11篇 復(fù)數(shù)的概念與運算學(xué)案 理(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習資料 2019.5 第六十九課時 復(fù)數(shù)的概念與運算(課前預(yù)習案) 考綱要求 1.了解復(fù)數(shù)的有關(guān)概念及復(fù)數(shù)的代數(shù)表示和幾何意義。 2.掌握復(fù)數(shù)代數(shù)形式的加、減、乘、除的運算法則。 3.了解從自然數(shù)系到復(fù)數(shù)系的關(guān)系及擴充的基本思想。 基礎(chǔ)知識梳理 1.復(fù)數(shù):形如 的數(shù)叫做復(fù)數(shù),其中a , b分別叫它的 和 . 2.分類:設(shè)復(fù)數(shù): (1) 當 =0時,z為實數(shù); (2) 當 0時,z為虛數(shù); (3) 當

2、 =0, 且 0時,z為純虛數(shù). 3.復(fù)數(shù)相等:如果兩個復(fù)數(shù) 相等且 相等就說這兩個復(fù)數(shù)相等. 4.共軛復(fù)數(shù):當兩個復(fù)數(shù)實部 ,虛部 時.這兩個復(fù)數(shù)互為共軛復(fù)數(shù).(當虛部不為零時,也可說成互為共軛虛數(shù)). 5.若z=a+bi, (a, bR), 則 | z |= ; z= . 6.復(fù)平面:建立直角坐標系來表示復(fù)數(shù)的平面叫做復(fù)平面, x軸叫做 , 叫虛軸. 7.復(fù)數(shù)z=a+bi(a, bR)與復(fù)平面上的點 建立了一一對應(yīng)的關(guān)系. 8

3、.兩個實數(shù)可以比較大小、但兩個復(fù)數(shù)如果不全是實數(shù),就 比較它們的大小. 9. 復(fù)數(shù)的運算: (1)(a+bi) (c+di)= ; (2)(a+bi)(c+di)= ; (3)(a+bi)(c+di)= ; (4)①i具有周期性:4n+1= ;4n+2= ; 4n+3= ; 4n= ; n+n+1+n+2+n+3 = (nN) ②(1+i)2= ; (1-i)2= ; ③= ;= . 預(yù)習自測 1. i是虛

4、數(shù)單位,則+i=________. 2. 若復(fù)數(shù)(1+i)(1+ai)是純虛數(shù),則實數(shù)a=________. 3. 復(fù)數(shù)(3+4i)i(其中i為虛數(shù)單位)在復(fù)平面上對應(yīng)的點位于 (  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4. (20xx浙江)把復(fù)數(shù)z的共軛復(fù)數(shù)記作,i為虛數(shù)單位.若z=1+i,則(1+z)等于(  ) A.3-i B.3+i C.1+3i D.3 5. (20xx北京)設(shè)a,b∈R.“a=0”是“復(fù)數(shù)a+bi是純虛數(shù)”的 (  ) A.充分而不必要條件 B.必要而不充分條件 C.

5、充分必要條件 D.既不充分也不必要條件 第六十九課時 復(fù)數(shù)的概念與運算(課堂探究案) 典型例題 考點1.復(fù)數(shù)的概念 【典例1】 (1)已知a∈R,復(fù)數(shù)z1=2+ai,z2=1-2i,若為純虛數(shù),則復(fù)數(shù)的虛部為(  ) A.1 B.i C. D.0 (2)若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,則“m=1”是“z1=z2”的(  ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件

6、 【變式1】(1)(20xx年高考上海卷(理))設(shè),是純虛數(shù),其中i是虛數(shù)單位,則m=____ (2)(20xx年普通高等學(xué)校招生統(tǒng)一考試天津數(shù)學(xué)(理))已知a, b∈R, i是虛數(shù)單位. 若(a + i)(1 + i) = bi, 則a + bi = ______. 考點2.復(fù)數(shù)的運算 【典例2】 (1)(20xx年普通高等學(xué)校招生統(tǒng)一考試新課標Ⅱ卷數(shù)學(xué)(理))設(shè)復(fù)數(shù)滿足,則 ( ?。? A. B. C. D. (2)(20xx年普通高等學(xué)校招生統(tǒng)一考試遼寧數(shù)學(xué)(理))復(fù)數(shù)的模為 ( ?。? A. B.

7、C. D. (3)(20xx年普通高等學(xué)校招生統(tǒng)一考試浙江數(shù)學(xué)(理))已知是虛數(shù)單位,則 (  ) A. B. C. D. 【變式2】 (1)已知復(fù)數(shù)z=,是z的共軛復(fù)數(shù),則z=________. (2)復(fù)數(shù)的值是________. (3)已知復(fù)數(shù)z滿足=2-i,則z=__________. 考點3.復(fù)數(shù)的幾何意義 【典例3】(1)(20xx年普通高等學(xué)校招生統(tǒng)一考試廣東省數(shù)學(xué)(理))若復(fù)數(shù)滿足,則在復(fù)平面內(nèi),對應(yīng)的點的坐標是 (  ) A. B. C. D. (2)(20xx

8、年高考湖南卷(理))復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于 ( ?。? A.第一象限 B.第二象限 C.第三象限 D.第四象限 (3)(20xx年高考湖北卷(理))在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對應(yīng)的點位于 ( ?。? A.第一象限 B.第二象限 C.第三象限 D.第四象限 (4)(20xx年普通高等學(xué)校招生統(tǒng)一考試福建數(shù)學(xué)(理))已知復(fù)數(shù)的共軛復(fù)數(shù)(i為虛數(shù)單位),則在復(fù)平面內(nèi)對應(yīng)的點位于 ( ?。? A.第一象限 B.第二象限 C.第三象限 D.第四象限 【變式3】 已知z是復(fù)數(shù),z+2i、均為實數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面

9、內(nèi)對應(yīng)的點在第一象限,求實數(shù)a的取值范圍. 當堂檢測 1. (20xx廣東)設(shè)i為虛數(shù)單位,則復(fù)數(shù)等于 (  ) A.6+5i B.6-5i C.-6+5i D.-6-5i 2. (20xx山東)若復(fù)數(shù)z滿足z(2-i)=11+7i(i為虛數(shù)單位),則z為 (  ) A.3+5i B.3-5i C.-3+5i D.-3-5i 3. (20xx福建)若復(fù)數(shù)z滿足zi=1-i,則z等于 (  ) A.-1-i B.1-i C.-1+i

10、 D.1+i 4. 若=1-bi,其中a,b都是實數(shù),i是虛數(shù)單位,則|a+bi|等于 (  ) A. B. C. D.1 5. (20xx上海)計算:=________(i為虛數(shù)單位). 第六十九課時 復(fù)數(shù)的概念與運算(課后鞏固案) A組全員必做題 1. (20xx湖北)方程x2+6x+13=0的一個根是 (  ) A.-3+2i B.3+2i C.-2+3i D.2+3i 2. 設(shè)f(n)=n+n(n∈N*

11、),則集合{f(n)}中元素的個數(shù)為 (  ) A.1 B.2 C.3 D.無數(shù)個 3. 對任意復(fù)數(shù)z=x+yi(x,y∈R),i為虛數(shù)單位,則下列結(jié)論正確的是 (  ) A.|z-|=2y B.z2=x2+y2 C.|z-|≥2x D.|z|≤|x|+|y| 4. (20xx湖南)已知復(fù)數(shù)z=(3+i)2(i為虛數(shù)單位),則|z|=________. 5.設(shè)復(fù)數(shù)z滿足i(z+1)=-3+2i(i為虛數(shù)單位),則z的實部是________. 6. (20xx江蘇)設(shè)a,b∈R,a+bi=(i為虛數(shù)單位),則a+b的值為_______

12、_. B組提高選做題 1. 已知復(fù)數(shù)z滿足=1-2i,則復(fù)數(shù)z=____________. 2.已知復(fù)數(shù)z=x+yi,且|z-2|=,則的最大值為_____________________________. 3.已知復(fù)數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2,且z1z2是實數(shù),求z2. 4.復(fù)數(shù)z1=+(10-a2)i,z2=+(2a-5)i,若1+z2是實數(shù),求實數(shù)a的值. 5.已知復(fù)數(shù)z,且|z|=2,求

13、|z-i|的最大值,以及取得最大值時的z. 第六十九課時復(fù)數(shù)的概念與運算 參考答案 預(yù)習自測 1. 答案 +i 解析?。玦=+i==+i. 2. 答案 1 解析 由(1+i)(1+ai)=(1-a)+(a+1)i是純虛數(shù)得,由此解得a=1. 3.答案 B 解析 由于(3+4i)i=-4+3i,因此該復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標是(-4,3),相對應(yīng)的點位于第二象限,選B. 4.答案 A 解析 (1+z)=(2+i)(1-i)=3-i. 5.答案 B 解析 當a=0,且b=0時,a+bi不是純虛數(shù);若a

14、+bi是純虛數(shù),則a=0. 故“a=0”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要而不充分條件. 典型例題 【典例1】【答案】 (1)A (2)A 解析 (1)由===+i是純虛數(shù),得a=1,此時=i,其虛部為1. (2)由, 解得m=-2或m=1, 所以“m=1”是“z1=z2”的充分不必要條件. 【變式1】(1)m=-2. (2) 【典例2】(1)A;(2)B ;(3)B 【變式2】答案 (1) (2)-16 (3)--i 解析 (1)方法一 |z|==, z=|z|2=. 方法二 z==-+, z==. (2)= =24=-16. (3)由=2-i,

15、得z=-i=-i=i--i=--i. 【典例3】(1)C ;(2)B ;(3)D ;(4)D 【變式3】 解 設(shè)z=x+yi(x、y∈R), ∴z+2i=x+(y+2)i,由題意得y=-2. ∵==(x-2i)(2+i)=(2x+2)+(x-4)i, 由題意得x=4.∴z=4-2i. ∵(z+ai)2=(12+4a-a2)+8(a-2)i, 根據(jù)條件,可知,解得2

16、5i. 3.答案 A 解析 方法一 由zi=1-i得z==-1=-1-i. 方法二 設(shè)z=a+bi(a,b∈R),由zi=1-i,得(a+bi)i=1-i,即-b+ai=1-i. 由復(fù)數(shù)相等的充要條件得即∴z=-1-i. 4.答案 A 解析 由=1-bi得a=2,b=-1,所以a+bi=2-i,所以|a+bi|=.所以選A. 5.答案 1-2i 解析?。剑剑?-2i. A組全員必做題 1.答案 A 解析 方法一 x==-32i,故應(yīng)選A. 方法二 令x=a+bi,a,b∈R,∴(a+bi)2+6(a+bi)+13=0,即a2-b2+6a+13+(2ab+6b)i=0,

17、 ∴解得即x=-32i,故應(yīng)選A. 2. 答案 C 解析 f(n)=n+n=in+(-i)n,f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0,… ∴集合中共有3個元素. 3.答案 D 解析 ∵=x-yi(x,y∈R),|z-|=|x+yi-x+yi|=|2yi|=|2y|,∴A不正確; 對于B,z2=x2-y2+2xyi,故不正確; ∵|z-|=|2y|≥2x不一定成立,∴C不正確; 對于D,|z|=≤|x|+|y|,故D正確. 4.答案 10 解析 方法一 ∵z=(3+i)2,∴|z|=|(3+i)2|=|3+i|2=10. 方法二 ∵z=(3

18、+i)2=9+6i+i2=8+6i,∴|z|==10. 5.答案 1 解析 設(shè)z=a+bi(a、b∈R),由i(z+1)=-3+2i,得-b+(a+1)i=-3+2i,∴a+1=2,∴a=1. 6.答案 8 解析 ∵==(25+15i)=5+3i,∴a=5,b=3.∴a+b=8. B組提高選做題 1. 答案?。玦 解析 z====-+i. 2.答案  解析 ∵|z-2|==, ∴(x-2)2+y2=3.由圖可知max==. 3.解 (z1-2)(1+i)=1-i?z1=2-i. 設(shè)z2=a+2i,a∈R, 則z1z2=(2-i)(a+2i)=(2a+2)+(4-a)

19、i. ∵z1z2∈R,∴a=4.∴z2=4+2i. 4.解 1+z2=+(a2-10)i++(2a-5)i =+[(a2-10)+(2a-5)]i =+(a2+2a-15)i. ∵1+z2是實數(shù), ∴a2+2a-15=0,解得a=-5或a=3. 又(a+5)(a-1)≠0,∴a≠-5且a≠1,故a=3. 5.解 方法一 設(shè)z=x+yi(x,y∈R), ∵|z|=2,∴x2+y2=4, |z-i|=|x+yi-i| =|x+(y-1)i|= ==. ∵y2=4-x2≤4,∴-2≤y≤2. 故當y=-2時,5-2y取得最大值9,從而取最大值3,此時x=0,即|z-i|取得最大值3時,z=-2i. 方法二  類比實數(shù)絕對值的幾何意義,可知方程|z|=2表示以原點為圓心,以2 為半徑的圓,而|z-i|表示圓上的點到點A(0,1)的距離.如圖,連接AO 并延長與圓交于點B(0,-2),顯然根據(jù)平面幾何的知識可知,圓上 的點B到點A的距離最大,最大值為3,即當z=-2i時,|z-i|取得 最大值3.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!