三管齊下貴州省2014屆高三數(shù)學 第十三章 選修系列 理含解析新人教A版
《三管齊下貴州省2014屆高三數(shù)學 第十三章 選修系列 理含解析新人教A版》由會員分享,可在線閱讀,更多相關(guān)《三管齊下貴州省2014屆高三數(shù)學 第十三章 選修系列 理含解析新人教A版(50頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第十三章 選修系列4 73 幾何證明選講 (一)相似三角形的判定及有關(guān)性質(zhì) 導學目標: 1.了解平行線等分線段定理和平行線分線段成比例定理;2.掌握相似三角形的判定定理及性質(zhì)定理;3.理解直角三角形射影定理. 自主梳理 1.平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在任一條(與這組平行線相交的)直線上截得的線段也相等. 2.平行線分線段成比例定理 兩條直線與一組平行線相交,它們被這組平行線截得的對應線段__________. 推論1 平行于三角形一邊的直線截其他兩邊(或________________),所得的對應線段__________.
2、 推論2 平行于三角形的一邊,并且和其他兩邊________的直線所截得的三角形的三邊與原三角形的三邊對應________. 推論3 三角形的一個內(nèi)角平分線分對邊所得的兩條線段與這個角的兩邊對應成比例. 3.相似三角形的判定 判定定理1 對于任意兩個三角形,如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.簡述為:兩角對應________的兩個三角形相似. 判定定理2 對于任意兩個三角形,如果一個三角形的兩邊和另一個三角形的兩邊對應成比例,并且夾角相等,那么這兩個三角形相似.簡述為:兩邊對應成比例且____________相等的兩個三角形相似. 判定定理3
3、 對于任意兩個三角形,如果一個三角形的三條邊和另一個三角形的三條邊對應成比例,那么這兩個三角形相似.簡述為:三邊對應成比例的兩個三角形相似. 4.相似三角形的性質(zhì) (1)相似三角形對應高的比、對應中線的比和對應角平分線的比都等于相似比; (2)相似三角形周長的比等于相似比; (3)相似三角形面積的比等于相似比的平方. 5.直角三角形射影定理 直角三角形一條直角邊的平方等于該直角邊在____________與斜邊的______,斜邊上的高的________等于兩條直角邊在斜邊上的射影的乘積. 自我檢測 1.如果梯形的中位線的長為6 cm,上底長為4 cm,那么下底長為______
4、__cm. 2.如圖,在△ABC中,ED∥BC,EF∥BD,則下列四個結(jié)論正確的是(填序號)________. ①=;②=;③=;④=. 3.如圖,在Rt△ABC中,∠ACB=90,CD⊥AB于點D,CD=2,BD=3,則AC=________. 4.如圖所示,在△ABC中,AD是∠BAC的平分線,AB=5 cm,AC=4 cm,BC=7 cm,則BD=________cm. 第4題圖 第5題圖 5.(2011陜西)如圖,∠B=∠D,AE⊥BC,∠ACD=90,且AB=6,AC=4,AD=12,則BE=________. 探究點一
5、確定線段的n等分點
例1 已知線段PQ,在線段PQ上求作一點D,使PD∶DQ=2∶1.
變式遷移1 已知△ABC,D在AC上,AD∶DC=2∶1,能否在AB上找到一點E,使得線段EC的中點在BD上.
探究點二 平行線分線段成比例定理的應用
例2 在△ABC的邊AB、AC上分別取D、E兩點,使BD=CE,DE的延長線交BC的延長線于點F.求證:=.
變式遷移2 如圖,已知AB∥CD∥EF,AB=a,CD=b(0
6、
探究點三 相似三角形的判定及性質(zhì)的應用
例3 如圖,已知梯形ABCD中,AB∥CD,過D與BC平行的直線交AB于點E,∠ACE=∠ABC,求證:ABCE=ACDE.
變式遷移3 如圖,已知?ABCD中,G是DC延長線上一點,AG分別交BD和BC于E、F兩點,證明AFAD=AGBF.
1.用添加平行輔助線的方法構(gòu)造使用平行線等分線段定理與平行線分線段成比例定理的條件.特別是在使用平行線分線段成比例定理及推論時,一定要注意對應線段,對應邊.
2.利用平行線等分線段定理將某線段任意等分 7、,需要過線段的一個端點作輔助線,在作圖時要注意保留作圖痕跡.
3.在證明兩個或兩個以上的比例式相等時,需要找第三個比例式與它們都相等,可考慮利用平行線分線段成比例定理或推論,也可以考慮用線段替換及等比定理,由相等的傳遞性得出結(jié)論.
4.判定兩個三角形相似,根據(jù)題設條件選擇使用三角形相似的判定定理.
(滿分:75分)
一、填空題(每小題5分,共40分)
1.如圖所示,l1∥l2∥l3,下列比例式正確的有________(填序號).
(1)=;(2)=;(3)=;(4)=.
2.如圖所示,D是△ABC的邊AB上的一點,過D點作DE∥BC交AC于E.已知=,則=______ 8、____________________________________.
3.如圖,在四邊形ABCD中,EF∥BC,F(xiàn)G∥AD,則+=________.
4.在直角三角形中,斜邊上的高為6,斜邊上的高把斜邊分成兩部分,這兩部分的比為3∶2,則斜邊上的中線的長為________.
5.(2010蘇州模擬)如圖,在梯形ABCD中,AD∥BC,BD與AC相交于點O,過點O的直線分別交AB,CD于E,F(xiàn),且EF∥BC,若AD=12,BC=20,則EF=________.
6.如圖所示,在△ABC中,AD⊥BC,CE是中線,DC=BE,DG⊥CE于G,EC的長為4,則EG=____ 9、____.
7.(2010天津武清一模)如圖,在△ABC中,AD平分∠BAC,DE∥AC,EF∥BC,AB=15,AF=4,則DE=________.
8.如圖所示,BD、CE是△ABC的中線,P、Q分別是BD、CE的中點,則=________.
二、解答題(共35分)
9.(11分)如圖所示,在△ABC中,∠CAB=90,AD⊥BC于D,BE是∠ABC的平分線,交AD于F,求證:=.
10.(12分)如圖,△ABC中,D是BC的中點,M是AD上一點,BM、CM的延長線分別交AC、AB于F、E.
求證:EF∥BC.
10、
11.(12分)(2010蘇州模擬)如圖,在四邊形ABCD中,AC與BD相交于O點,直線l平行于BD且與AB,DC,BC,AD及AC的延長線分別相交于點M,N,R,S和P,
求證:PMPN=PRPS.
73 幾何證明選講
(一)相似三角形的判定及有關(guān)性質(zhì)
自主梳理
2.成比例 兩邊的延長線 成比例 相交 成比例
3.相等 夾角 5.斜邊上的射影 乘積 平方
自我檢測
1.8 2.③
3.
解析 由射影定理:CD2=ADBD.
∴AD=,∴AC===.
4.
解析 ∵==,∴BD 11、=cm.
5.4
解析 ∵AC=4,AD=12,∠ACD=90,
∴CD2=AD2-AC2=128,
∴CD=8.
又∵AE⊥BC,∠B=∠D,
∴△ABE∽△ADC,∴=,
∴BE===4.
課堂活動區(qū)
例1 解題導引 利用平行線等分線段定理可對線段任意等分,其作圖步驟為:首先作出輔助射線,然后在射線上依次截取任意相同長度的n條線段,最后過輔助線上的各等分點作平行線,確定所求線段的n等分點.
解 在線段PQ上求作點D,使PD∶DQ=2∶1,就是要作出線段PQ上靠近Q點的一個三等分點,通過線段PQ的一個端點作輔助射線,并取線段的三等分點,利用平行線等分線段定理確定D點的 12、位置.
作法:①作射線PN.
②在射線PN上截取PB=2a,BC=a.
③連接CQ.
④過點B作CQ的平行線,交PQ于D.
∴點D即為所求的點.
變式遷移1
解 假設能找到,如圖,設EC交BD于點F,則F為EC的中點,
作EG∥AC交BD于G.
∵EG∥AC,EF=FC,
∴△EGF≌△CDF,且EG=DC,
∴EG綊AD,△BEG∽△BAD,
∴==,∴E為AB的中點.
∴當E為AB的中點時,EC的中點在BD上.
例2 解題導引 證明線段成比例問題,一般有平行的條件可考慮用平行線分線段成比例定理或推論,也可以用三角形相似或考慮用線段替換等方法.
證明 作E 13、G∥AB交BC于G,如圖所示,
∵△CEG∽△CAB,
∴=,即==,
又∵=,∴=.
變式遷移2 解 如圖,過點F作FH∥EC,分別交BA,DC的延長線于點G,H,由EF∥AB∥CD及FH∥EC,知AG=CH=EF,F(xiàn)G=AE,F(xiàn)H=EC.從而FG∶FH=AE∶EC=m∶n.
由BG∥DH,知BG∶DH=FG∶FH=m∶n.
設EF=x,則得(x+a)∶(x+b)=m∶n.
解得x=,
即EF=.
例3 解題導引 有關(guān)兩線段的比值的問題,除了應用平行線分線段成比例定理外,也可利用相似三角形的判定和性質(zhì)求解.解題中要注意觀察圖形特點,巧添輔助線,對解題可起到事半功倍的 14、效果.
證明 方法一 ∵AB∥CD,
∴=,即=.①
∵DE∥BC,
∴=,即=.②
由①②得=,③
∵∠FDC=∠ECF,∠DEC=∠FEC,
∴△EFC∽△ECD.
∴=.④
由③④得=,
即ABCE=ACDE.
方法二 ∵AB∥CD,DE∥BC,
∴BEDC是平行四邊形.
∴DE=BC.
∵∠ACE=∠ABC,∠EAC=∠BAC,
∴△AEC∽△ACB.∴=.
∴=,即ABCE=ACDE.
變式遷移3 證明 因為四邊形ABCD為平行四邊形,
所以AB∥DC,AD∥BC.
所以△ABF∽△GCF,△GCF∽△GDA.
所以△ABF∽△GDA.
從而 15、有=,即AFAD=AGBF.
課后練習區(qū)
1.(4)
解析 由平行線分線段成比例定理可知(4)正確.
2.
解析 由=知,=,=,故=.
3.1
解析 ∵EF∥BC,∴=,
又∵FG∥AD,∴=,
∴+=+==1.
4.
解析 設斜邊上的兩段的長分別為3t,2t,由直角三角形中的射影定理知:62=3t2t,解得t=(t>0,舍去負根),所以斜邊的長為5,故斜邊上的中線的長為.
5.15
解析 ∵AD∥BC,∴===,∴=,
∵OE∥AD,∴==,
∴OE=AD=12=,
同理可求得OF=BC=20=,
∴EF=OE+OF=15.
6.2
解析 連接DE 16、,因為AD⊥BC,所以△ADB是直角三角形,則DE=AB=BE=DC.又因為DG⊥CE于G,所以DG平分CE,故EG=2.
7.6
解析 設DE=x,∵DE∥AC,
∴=,解得BE=.
∴===.
又∵AD平分∠BAC,∴===,
解得x=6.
8.
解析 連接DE,延長QP交AB于N,
則
得PQ=BC.
9.證明 由三角形的內(nèi)角平分線定理得,
在△ABD中,=,①
在△ABC中,=,②(3分)
在Rt△ABC中,由射影定理知,AB2=BDBC,
即=.③(6分)
由①③得:=,④(9分)
由②④得:=.(11分)
10.證明 延長AD至G,使DG=M 17、D,連接BG、CG.
∵BD=DC,MD=DG,
∴四邊形BGCM為平行四邊形.(4分)
∴EC∥BG,F(xiàn)B∥CG,
∴=,=,
∴=,(8分)
∴EF∥BC.(12分)
11.證明 ∵BO∥PM,
∴=,(2分)
∵DO∥PS,
∴=,∴=.(4分)
即=,由BO∥PR
得=.(6分)
由DO∥PN得=.(8分)
∴=,即=,
∴=.∴PMPN=PRPS.(12分)
74 幾何證明選講
(二)直線與圓的位置關(guān)系
導學目標: 1.理解圓周角定理,弦切角定理及其推論;2.理解圓的切線的判定及性質(zhì)定理;3.理解相交弦定理,割線定理,切割線定理;4.理解圓 18、內(nèi)接四邊形的性質(zhì)定理及判定.
自主梳理
1.圓周角、弦切角及圓心角定理
(1)__________的度數(shù)等于其的對______的度數(shù)的一半.
推論1:________(或________)所對的圓周角相等;同圓或等圓中,相等的圓周角__________相等.
推論2:半圓(或直徑)所對的__________等于90.反之,90的圓周角所對的弧是________(或__________).
(2)弦切角的度數(shù)等于其所夾孤的度數(shù)的____.
(3)圓心角的度數(shù)等于它所對弧的度數(shù).
2.圓中比例線段有關(guān)定理
(1)相交弦定理:______的兩條____________,每條弦被 19、交點分成的____________的積相等.
(2)切割線定理:從圓外一點引圓的一條割線和一條切線,切線長是這點到割線與圓的兩個交點的線段長的____________.
(3)割線定理:從圓外一點引圓的兩條________,該點到每條割線與圓的交點的兩條線段長的積相等.
溫馨提示 相交弦定理,切割線定理,割線定理揭示了與圓有關(guān)的線段間的比例關(guān)系,在與圓有關(guān)的比例線段問題的證明、計算以及證明線段或角相等等問題中應用甚廣.
3.切線長定理
從________一點引圓的兩條切線,__________相等.
4.圓內(nèi)接四邊形的性質(zhì)與判定定理
(1)性質(zhì)定理:圓內(nèi)接四邊形的對角______ 20、__.
推論:圓內(nèi)接四邊形的任何一個外角都等于它的內(nèi)角的________.
(2)判定定理:如果四邊形的__________,則四邊形內(nèi)接于____.
推論:如果四邊形的一個外角等于它的____________,那么這個四邊形的四個頂點________.
5.圓的切線的性質(zhì)及判定定理
(1)性質(zhì)定理:圓的切線垂直于經(jīng)過切點的________.
推論1:經(jīng)過________且________與垂直的直線必經(jīng)過切點.
推論2:經(jīng)過________且切線與垂直的直線必經(jīng)過______________________________.
(2)判定定理:過半徑________且與這條半徑 21、________的直線是圓的切線.
自我檢測
1.如圖在Rt△ABC中,∠B=90,D是AB上一點,且AD=2DB,以D為圓心,DB為半徑的圓與AC相切,則sin A=________.
2.(2010南京模擬)如圖,AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為________.
3.(2011湖南)如圖,A,E是半圓周上的兩個三等分點,直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點F,則AF的長為________.
4.如圖所示,AB是⊙O的直徑,BC是⊙O的切線,AC交⊙O于點D,若AD=32,CD=18,則AB=_____ 22、___.
5.(2010揭陽模擬)如圖,已知P是⊙O外一點,PD為⊙O的切線,D為切點,割線PEF經(jīng)過圓心O,PF=12,PD=4,則圓O的半徑長為________、∠EFD的度數(shù)為________.
探究點一 與圓有關(guān)的等角、等弧、等弦的判定
例1 如圖,⊙O的兩條弦AC,BD互相垂直,OE⊥AB,垂足為點E.求證:OE=CD.
變式遷移1 在△ABC中,已知CM是∠ACB的平分線,△AMC的外接圓O交BC于點N;若AC=AB,求證:BN=3MN.
探究點二 四點共圓的判定
例 23、2 如圖,四邊形ABCD中,AB、DC的延長線交于點E,AD,BC的延長線交于點F,∠AED,∠AFB的角平分線交于點M,且EM⊥FM.求證:四邊形ABCD內(nèi)接于圓.
變式遷移2 如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B、C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.
(1)證明:A,P,O,M四點共圓;
(2)求∠OAM+∠APM的大?。?
探究點三 與圓有關(guān)的比例線段的證明
例3 如圖,PA切⊙O于點A,割線PBC交⊙O于點B,C, 24、∠APC的角平分線分別與AB,AC相交于點D,E,求證:
(1)AD=AE;
(2)AD2=DBEC.
變式遷移3 (2010全國)
如圖,已知圓上的?。?,過C點的圓的切線與BA的延長線交于E點,證明:
(1)∠ACE=∠BCD;
(2)BC2=BECD.
1.圓周角定理與圓心角定理在證明角相等時有較普遍的應用,尤其是利用定理進行等角代換與傳遞.
2.要注意一些常用的添加輔助線的方法,若證明直線與圓相切,則連結(jié)直線與圓的公共點和圓心證垂直;遇到直徑時,一般要引直徑所對的圓 25、周角,利用直徑所對的圓周角是直角解決有關(guān)問題.
3.判斷兩線段是否相等,除一般方法(通過三角形全等)外,也可用等線段代換,或用圓心角定理及其推論證明.
4.證明多點共圓的常用方法:
(1)證明幾個點與某個定點距離相等;
(2)如果某兩點在某條線段的同旁,證明這兩點對這條線段的張角相等;
(3)證明凸四邊形內(nèi)對角互補(或外角等于它的內(nèi)角的對角).
5.圓中比例線段有關(guān)定理常與圓周角、弦切角聯(lián)合應用,要注意在題中找相等的角,找相似三角形,從而得到線段的比.
(滿分:75分)
一、填空題(每小題5分,共40分)
1.如圖,已知AB,CD是⊙O的兩條弦,且AB=CD, 26、OE⊥AB,OF⊥CD,垂足分別是E,F(xiàn),則結(jié)論①=,②∠AOB=∠COD,③OE=OF,④=中,正確的有________個.
2.(2010湖南)如圖所示,過⊙O外一點P作一條直線與⊙O交于A、B兩點.已知PA=2,點P到⊙O的切線長PT=4,則弦AB的長為________.
3.(2010陜西)
如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3 cm,4 cm,以AC為直徑的圓與AB交于點D,則=________.
4.(2009廣東)如圖,點A,B,C是圓O上的點,且AB=4,∠ACB=45,則圓O的面積為________.
5.已知PA是圓O的切線,切 27、點為A,PA=2,AC是圓O的直徑,PC與圓O交于點B,PB=1,則圓O的半徑R=________.
6.如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2,AB=3.則BD的長為________.
7.(2011天津)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=,AF∶FB∶BE=4∶2∶1.若CE與圓相切,則線段CE的長為________.
8.(2010天津)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若=,=,則的值為________.
二、解答題(共35分)
9.(11分)如圖,三 28、角形ABC中,AB=AC,⊙O經(jīng)過點A,與BC相切于B,與AC相交于D,若AD=CD=1,求⊙O的半徑r.
10.(12分)(2009江蘇)如圖,在四邊形ABCD中,△ABC≌△BAD.求證:AB∥CD.
11.(12分)(2011江蘇)如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2).圓O1的弦AB交圓O2于點C(O1不在AB上).求證:AB∶AC為定值.
74 幾何證明選講
(二)直線與圓的位置關(guān)系
自主梳理
1.(1)圓周 29、角 弧 同弧 等弧 所對的弧 圓周角 半圓 弦為直徑 (2)一半
2.(1)圓 相交弦 兩條線段長
(2)等比中項 (3)割線 3.圓外 切線長 4.(1)互補 對角 (2)對角互補 圓 內(nèi)角的對角 共圓
5.(1)半徑 圓心 切線 切點 圓心 (2)外端 垂直
自我檢測
1.
解析 設切點為T,則DT⊥AC,AD=2DB=2DT,
∴∠A=30,sin A=.
2.2
解析 連接CB,則∠DCA=∠CBA,
又∠ADC=∠ACB=90,
∴△ADC∽△ACB.
∴=.
∴AC2=ABAD=26=12.
∴AC=2.
3.
解析 如圖,連接CE,AO, 30、AB.根據(jù)A,E是半圓周上的兩個三等分點,BC為直徑,可得∠CEB=90,∠CBE=30,∠AOB=60,故△AOB為等邊三角形,AD=,OD=BD=1,∴DF=,∴AF=AD-DF=.
4.40
解析 如圖,連接BD,則BD⊥AC,由射影定理知,
AB2=ADAC=3250=1 600,故AB=40.
5.4 30
解析 由切割線定理得PD2=PEPF,
∴PE===4,∴EF=8,OD=4.
又∵OD⊥PD,OD=PO,∠P=30,
∠POD=60=2∠EFD,∴∠EFD=30.
課堂活動區(qū)
例1 解題導引 (1)借用等弦或等弧所對圓周角相等,所對的圓心角相等,進行 31、角的等量代換;同時也可借在同圓或等圓中,相等的圓周角(或圓心角)所對的弧相等,進行弧(或弦)的等量代換.
(2)本題的證法是證明一條線段等于另一條線段的一半的常用方法.
證明 作直徑AF,連接BF,CF,則∠ABF=∠ACF=90.
又OE⊥AB,O為AF的中點,
則OE=BF.
∵AC⊥BD,
∴∠DBC+∠ACB=90,
又∵AF為直徑,∠BAF+∠BFA=90,
∵∠AFB=∠ACB,
∴∠DBC=∠BAF,即有CD=BF.
從而得OE=CD.
變式遷移1 證明 ∵CM是∠ACB的平分線,
∴=,
即BC=AC,
又由割線定理得BMBA=BNBC,
∴B 32、NAC=BMBA,
又∵AC=AB,∴BN=3AM,
∵在圓O內(nèi)∠ACM=∠MCN,
∴AM=MN,∴BN=3MN.
例2 解題導引 證明多點共圓,當它們在一條線段同側(cè)時,可證它們對此線段張角相等,也可以證明它們與某一定點距離相等;如兩點在一條線段異側(cè),則證明它們與線段兩端點連成的凸四邊形對角互補.
證明 連接EF,
因為EM是∠AEC的角平分線,
所以∠FEC+∠FEA=2∠FEM.
同理,∠EFC+∠EFA=2∠EFM.
而∠BCD+∠BAD=∠ECF+∠BAD
=(180-∠FEC-∠EFC)+(180-∠FEA-∠EFA)
=360-2(∠FEM+∠EFM)
33、
=360-2(180-∠EMF)=2∠EMF=180,
即∠BCD與∠BAD互補.
所以四邊形ABCD內(nèi)接于圓.
變式遷移2 (1)證明 連接OP,OM,
因為AP與⊙O相切于點P,
所以OP⊥AP.
因為M是⊙O的弦BC的中點,所以OM⊥BC.
于是∠OPA+∠OMA=180,
由圓心O在∠PAC的內(nèi)部,可知四邊形APOM的對角互補,
所以A,P,O,M四點共圓.
(2)解 由(1)得A,P,O,M四點共圓,
所以∠OAM=∠OPM.
由(1)得OP⊥AP.
由圓心O在∠PAC的內(nèi)部,
可知∠OPM+∠APM=90,
所以∠OAM+∠APM=90.
例3 34、 解題導引 尋找適當?shù)南嗨迫切危褞讞l要證的線段集中到這些相似三角形中,再用圓中角、與圓有關(guān)的比例線段的定理找到需要的比例式,使問題得證.
證明 (1)∠AED=∠EPC+∠C,∠ADE=∠APD+∠PAB.
因PE是∠APC的角平分線,故∠EPC=∠APD,PA是⊙O的切線,故∠C=∠PAB.
所以∠AED=∠ADE.故AD=AE.
(2)?△PCE∽△PAD?=;
?△PAE∽△PBD?=.
又PA是切線,PBC是割線?PA2=PBPC?=.
故=,又AD=AE,故AD2=DBEC.
變式遷移3 證明 (1)因為=,所以∠BCD=∠ABC.
又因為EC與圓相切于點C,故 35、∠ACE=∠ABC,
所以∠ACE=∠BCD.
(2)因為∠ECB=∠CDB,∠EBC=∠BCD,
所以△BDC∽△ECB,故=,即BC2=BECD.
課后練習區(qū)
1.4
解析 ∵在同圓或等圓中,等弦所對的圓心角相等,所對的弧相等,所對弦心距相等,故①②③成立,又由=,得=,∴④正確.
2.6
解析 連接BT,由切割線定理,
得PT2=PAPB,
所以PB=8,故AB=6.
3.
解析?。?=?AD=?BD=(cm),=.
4.8π
解析 連接OA,OB,
∵∠BCA=45,
∴∠AOB=90.
設圓O的半徑為R,在Rt△AOB中,R2+R2=AB2=16,∴ 36、R2=8.
∴圓O的面積為8π.
5.
解析 如圖,依題意,AO⊥PA,AB⊥PC,PA=2,PB=1,∠P=60,
在Rt△CAP中,有2OA=2R=2tan 60=2,
∴R=.
6.4
解析 由切割線定理得:DBDA=DC2,即DB(DB+BA)=DC2,∴DB2+3DB-28=0,∴DB=4.
7.
解析 設BE=a,則AF=4a,F(xiàn)B=2a.
∵AFFB=DFFC,∴8a2=2,∴a=,
∴AF=2,F(xiàn)B=1,BE=,∴AE=.
又∵CE為圓的切線,∴CE2=EBEA==.
∴CE=.
8.
解析 ∵∠P=∠P,∠PCB=∠PAD,
∴△P 37、CB∽△PAD.∴==.
∵=,=,∴=.
9.
解 過B點作BE∥AC交圓于點E,連接AE,BO并延長交AE于F,
由題意∠ABC=∠ACB=∠AEB,(2分)
又BE∥AC,∴∠CAB=∠ABE,則AB=AC知,∠ABC=∠ACB=∠AEB=∠BAE,(4分)
則AE∥BC,四邊形ACBE為平行四邊形.
∴BF⊥AE.又BC2=CDAC=2,
∴BC=,BF==.(8分)
設OF=x,則
解得r=.(11分)
10.證明 由△ABC≌△BAD得∠ACB=∠BDA,(3分)
故A、B、C、D四點共圓,(5分)
從而∠CAB=∠CDB.(7分)
再由△ABC≌△ 38、BAD得∠CAB=∠DBA,
因此∠DBA=∠CDB,(10分)
所以AB∥CD.(12分)
11.
證明 如圖,連接AO1并延長,分別交兩圓于點E和點D.連接BD,CE.因為圓O1與圓O2內(nèi)切于點A,所以點O2在AD上,故AD,AE分別為圓O1,圓O2的直徑.(5分)
從而∠ABD=∠ACE=.(7分)
所以BD∥CE,于是===.(10分)
所以AB∶AC為定值.(12分)
75 坐標系與參數(shù)方程
導學目標:1.了解坐標系的有關(guān)概念,理解簡單圖形的極坐標方程.2.會進行極坐標方程與直角坐標方程的互化.3.理解直線、圓及橢圓的參數(shù)方程,會進行參數(shù)方程與普通方程的 39、互化,并能進行簡單應用.
自主梳理
1.極坐標系的概念
在平面上取一個定點O,叫做極點;自極點O引一條射線Ox,叫做________;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個____________.
設M是平面上任一點,極點O與點M的距離OM叫做點M的________,記為ρ;以極軸Ox為始邊,射線OM為終邊的角xOM叫做點M的________,記為θ.有序數(shù)對(ρ,θ)叫做點M的__________,記作(ρ,θ).
2.極坐標和直角坐標的互化
把直角坐標系的原點作為極點,x軸的正半軸作為極軸,并在兩種坐標系中取相同的長 40、度單位,設M是平面內(nèi)任意一點,它的直角坐標是(x,y),極坐標為(ρ,θ),則它們之間的關(guān)系為x=__________,y=__________.另一種關(guān)系為:ρ2=__________,tan θ=______________.
3.簡單曲線的極坐標方程
(1)一般地,如果一條曲線上任意一點都有一個極坐標適合方程φ(ρ,θ)=0,并且坐標適合方程φ(ρ,θ)=0的點都在曲線上,那么方程φ(ρ,θ)=0叫做曲線的____________.
(2)常見曲線的極坐標方程
①圓的極坐標方程
____________表示圓心在(r,0)半徑為|r|的圓;
____________表示圓心在 41、(r,)半徑為|r|的圓;
________表示圓心在極點,半徑為|r|的圓.
②直線的極坐標方程
____________表示過極點且與極軸成α角的直線;
____________表示過(a,0)且垂直于極軸的直線;
____________表示過(b,)且平行于極軸的直線;
ρsin(θ-α)=ρ0sin(θ0-α)表示過(ρ0,θ0)且與極軸成α角的直線方程.
4.常見曲線的參數(shù)方程
(1)直線的參數(shù)方程
若直線過(x0,y0),α為直線的傾斜角,則直線的參數(shù)方程為這是直線的參數(shù)方程,其中參數(shù)l有明顯的幾何意義.
(2)圓的參數(shù)方程
若圓心在點M(a,b),半徑為R 42、,則圓的參數(shù)方程為0≤α<2π.
(3)橢圓的參數(shù)方程
中心在坐標原點的橢圓+=1的參數(shù)方程為(φ為參數(shù)).
(4)拋物線的參數(shù)方程
拋物線y2=2px(p>0)的參數(shù)方程為
自我檢測
1.(2010北京)極坐標方程(ρ-1)(θ-π)=0(ρ≥0)表示的圖形是( )
A.兩個圓 B.兩條直線
C.一個圓和一條射線 D.一條直線和一條射線
2.(2010湖南)極坐標方程ρ=cos θ和參數(shù)方程(t為參數(shù))所表示的圖形分別是( )
A.圓、直線 B.直線、圓
C.圓、圓 D.直線、直線
3.(2010重慶)直線y=x+與圓心為D的圓(θ 43、∈[0,2π))交于A、B兩點,則直線AD與BD的傾斜角之和為( )
A.π B.π
C.π D.π
4.(2011廣州一模)在極坐標系中,直線ρsin(θ+)=2被圓ρ=4截得的弦長為________.
5.(2010陜西)已知圓C的參數(shù)方程為(α為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin θ=1,則直線l與圓C的交點的直角坐標為________________.
探究點一 求曲線的極坐標方程
例1 在極坐標系中,以(,)為圓心,為半徑的圓的方程為________.
變式遷移1 如圖,求經(jīng)過點A(a, 44、0)(a>0),且與極軸垂直的直線l的極坐標方程.
探究點二 極坐標方程與直角坐標方程的互化
例2 (2009遼寧)在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立坐標系.曲線C的極坐標方程為ρcos=1,M、N分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求M、N的極坐標;
(2)設MN的中點為P,求直線OP的極坐標方程.
變式遷移2 (2010東北三校第一次聯(lián)考)在極坐標系下,已知圓O:ρ=cos θ+sin θ和直線l:ρsin(θ-)=,
(1)求圓O和直線l的直角坐標方程; 45、
(2)當θ∈(0,π)時,求直線l與圓O公共點的一個極坐標.
探究點三 參數(shù)方程與普通方程的互化
例3 將下列參數(shù)方程化為普通方程:
(1);(2);(3).
變式遷移3 化下列參數(shù)方程為普通方程,并作出曲線的草圖.
(1)(θ為參數(shù));
(2) (t為參數(shù)).
探究點四 參數(shù)方程與極坐標的綜合應用
例4 求圓ρ=3cos θ被直線(t是參數(shù))截得的弦長.
變式遷移4 (2011課標全國)在直角坐標系xOy中,曲線C1的參數(shù)方程為 46、(α為參數(shù))
M是C1上的動點,P點滿足=2,P點的軌跡為曲線C2.
(1)求C2的方程;
(2)在以O為極點,x軸的正半軸為極軸的極坐標系中,射線θ=與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|.
本節(jié)內(nèi)容要注意以下兩點:一、簡單曲線的極坐標方程可結(jié)合極坐標系中ρ和θ的具體含義求出,也可利用極坐標方程與直角坐標方程的互化得出.同直角坐標方程一樣,由于建系的不同,曲線的極坐標方程也會不同.在沒有充分理解極坐標的前提下,可先化成直角坐標解決問題.二、在普通方程中,有些F(x,y)=0不易得到,這時可借助于一個中間變量(即參數(shù))來找到變量x,y之間 47、的關(guān)系.同時,在直角坐標系中,很多比較復雜的計算(如圓錐曲線),若借助于參數(shù)方程來解決,將會大大簡化計算量.將曲線的參數(shù)方程化為普通方程的關(guān)鍵是消去其中的參數(shù),此時要注意其中的x,y(它們都是參數(shù)的函數(shù))的取值范圍,也即在消去參數(shù)的過程中一定要注意普通方程與參數(shù)方程的等價性.參數(shù)方程化普通方程常用的消參技巧有:代入消元、加減消元、平方后相加減消元等.同極坐標方程一樣,在沒有充分理解參數(shù)方程的前提下,可先化成直角坐標方程再去解決相關(guān)問題.
(滿分:75分)
一、選擇題(每小題5分,共25分)
1.在極坐標系中,與點(3,-)關(guān)于極軸所在直線對稱的點的極坐標是( )
A.(3,π) 48、 B.(3,) C.(3,π) D.(3,π)
2.曲線的極坐標方程為ρ=2cos2-1的直角坐標方程為( )
A.x2+(y-)2= B.(x-)2+y2=
C.x2+y2= D.x2+y2=1
3.(2010湛江模擬)在極坐標方程中,曲線C的方程是ρ=4sin θ,過點(4,)作曲線C的切線,則切線長為( )
A.4 B. C.2 D.2
4.(2010佛山模擬)已知動圓方程x2+y2-xsin 2θ+2ysin(θ+)=0(θ為參數(shù)),那么圓心的軌跡是( )
A.橢圓 B.橢圓的一部分
C.拋物線 49、 D.拋物線的一部分
5.(2010安徽)設曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為( )
A.1 B.2 C.3 D.4
二、填空題(每小題4分,共12分)
6.(2010天津)已知圓C的圓心是直線(t為參數(shù))與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為________.
7.(2011廣東)已知兩曲線參數(shù)方程分別為(0≤θ<π)和(t∈R),它們的交點坐標為________.
8.(2010廣東深圳高級中學一模)在直角坐標系中圓C的參數(shù)方程為(α為參數(shù)),若以原點O為極 50、點,以x軸正半軸為極軸建立極坐標系,則圓C的極坐標方程為________.
三、解答題(共38分)
9.(12分)(2011江蘇)在平面直角坐標系xOy中,求過橢圓(φ為參數(shù))的右焦點,且與直線(t為參數(shù))平行的直線的普通方程.
10.(12分)(2010福建)在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)).在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ.
(1)求圓C的直角坐標方程;
(2)設圓C與直線l交于點A,B.若點P的坐標為(3,),求|PA|+|PB|.
51、
11.(14分)(2010課標全國)已知直線C1:(t為參數(shù)),圓C2:(θ為參數(shù)).
(1)當α=時,求C1與C2的交點坐標;
(2)過坐標原點O作C1的垂線,垂足為A,P為OA的中點,當α變化時,求P點軌跡的參數(shù)方程,并指出它是什么曲線.
75 坐標系與參數(shù)方程
自主梳理
1.極軸 極坐標系 極徑 極角 極坐標 2.ρcos θ ρsin θ x2+y2 (x≠0) 3.(1)極坐標方程 (2)①ρ=2rcos θ ρ=2rsin θ ρ=r?、讦龋溅?ρ∈R) ρcos θ=a ρsin θ=b
自 52、我檢測
1.C 2.A 3.C
4.4
5.(-1,1),(1,1)
解析 ∵y=ρsin θ,
∴直線l的直角坐標方程為y=1.
由得x2+(y-1)2=1.
由得或
∴直線l與圓C的交點的直角坐標為(-1,1)和(1,1).
課堂活動區(qū)
例1 解題導引 求曲線的極坐標方程的步驟:①建立適當?shù)臉O坐標系,設P(ρ,θ)是曲線上任意一點;②由曲線上的點所適合的條件,列出曲線上任意一點的極徑ρ和極角θ之間的關(guān)系式;③將列出的關(guān)系式進行整理、化簡,得出曲線上的極坐標方程;④證明所得方程就是曲線的極坐標方程,若方程的推導過程正確,化簡過程都是同解變形,這一證明可以省略.
答案 ρ 53、=asin θ,0≤θ<π
解析 圓的直徑為a,設圓心為C,在圓上任取一點A(ρ,θ),
則∠AOC=-θ或θ-,
即∠AOC=|θ-|.
又ρ=acos∠AOC=acos|θ-|=asin θ.
∴圓的方程是ρ=asin θ,0≤θ<π.
變式遷移1 解 設P(ρ,θ)是直線l上任意一點,OPcos θ=OA,
即ρcos θ=a,
故所求直線的極坐標方程為ρcos θ=a.
例2 解題導引 直角坐標方程化為極坐標方程比較容易,只要運用公式x=ρcos θ及y=ρsin θ直接代入并化簡即可;而極坐標方程化為直角坐標方程則相對困難一些,解此類問題常通過變形,構(gòu)造形如ρc 54、os θ,ρsin θ,ρ2的形式,進行整體代換.其中方程的兩邊同乘以(或同除以)ρ及方程兩邊平方是常用的變形方法.但對方程進行變形時,方程必須同解,因此應注意對變形過程的檢驗.
解 (1)由ρcos=1得
ρ=1.
從而C的直角坐標方程為x+y=1,
即x+y=2,當θ=0時,ρ=2,所以M(2,0).
當θ=時,ρ=,所以N.
(2)M點的直角坐標為(2,0).
N點的直角坐標為(0,).
所以P點的直角坐標為,
則P點的極坐標為,
所以直線OP的極坐標方程為θ=,ρ∈(-∞,+∞).
變式遷移2 解 (1)圓O:ρ=cos θ+sin θ,即ρ2=ρcos θ+ρs 55、in θ,
圓O的直角坐標方程為x2+y2=x+y,
即x2+y2-x-y=0.
直線l:ρsin(θ-)=,即ρsin θ-ρcos θ=1,
則直線l的直角坐標方程為y-x=1,
即x-y+1=0.
(2)由得
故直線l與圓O公共點的一個極坐標為(1,).
例3 解題導引 參數(shù)方程通過消去參數(shù)化為普通方程.對于(1)直接消去參數(shù)k有困難,可通過兩式相除,先降低k的次數(shù),再運用代入法消去k;對于(2)可運用恒等式(sin θ+cos θ)2=1+sin 2θ消去θ;對于(3)可運用恒等式()2+()2=1消去t.
另外,參數(shù)方程化為普通方程時,不僅要消去參數(shù),還應注意普通方 56、程與原參數(shù)方程的取值范圍保持一致.
解 (1)兩式相除,得k=.將k=代入,得x=.
化簡,得所求的普通方程是4x2+y2-6y=0(y≠6).
(2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ),
得y2=2-x.
又x=1-sin 2θ∈[0,2],
得所求的普通方程是y2=2-x,x∈[0,2].
(3)由()2+()2=1,
得x2+4y2=1.
又x=≠-1,
得所求的普通方程是x2+4y2=1(x≠-1).
變式遷移3 解 (1)由y2=(sin θ+cos θ)2=1+sin 2θ=1+2x,
得y2=2x+1.
∵-≤si 57、n 2θ≤,∴-≤x≤.
∵-≤sin θ+cos θ≤,∴-≤y≤.
故所求普通方程為
y2=2 (-≤x≤,-≤y≤),圖形為拋物線的一部分.
圖形如圖甲所示.
(2)由x2+y2=2+2=1及x=≠0,xy=≥0知,所求軌跡為兩段圓弧x2+y2=1 (0 58、經(jīng)過圓心,
所以圓被直線截得的弦長為3.
變式遷移4 解 (1)設P(x,y),則由條件知M(,).
由于M點在C1上,
所以即
從而C2的參數(shù)方程為(α為參數(shù))
(2)曲線C1的極坐標方程為ρ=4sin θ,曲線C2的極坐標方程為ρ=8sin θ.
射線θ=與C1的交點A的極徑為ρ1=4sin,
射線θ=與C2的交點B的極徑為ρ2=8sin.
所以|AB|=|ρ2-ρ1|=2.
課后練習區(qū)
1.B [由于極徑不變,極角關(guān)于極軸對稱,
∴其對稱點為(3,).故選B.]
2.B [∵ρ=2cos2-1,∴ρ2=ρcos θ即x2+y2=x,
∴(x-)2+y2=.]
59、
3.C [ρ=4sin θ化為普通方程為x2+(y-2)2=4,點(4,)化為直角坐標為(2,2),切線長、圓心到定點的距離及半徑構(gòu)成直角三角形,由勾股定理:切線長為=2,故選C.]
4.D [圓心軌跡的參數(shù)方程為
即
消去參數(shù)得y2=1+2x(-≤x≤),故選D.]
5.B [∵曲線C的方程為(θ為參數(shù)),
∴(x-2)2+(y+1)2=9,而l為x-3y+2=0,
∴圓心(2,-1)到l的距離d===.又∵<3,>3,∴有2個點.]
6.(x+1)2+y2=2
解析 直線(t為參數(shù))與x軸的交點為(-1,0),故圓C的圓心為(-1,0).又圓C與直線x+y+3=0相切 60、,∴圓C的半徑為r==,∴圓C的方程為(x+1)2+y2=2.
7.(1,)
解析 將兩曲線的參數(shù)方程化為一般方程分別為+y2=1(0≤y≤1,- 61、x-4),(8分)
即x-2y-4=0.(12分)
10.解 方法一 (1)ρ=2sin θ,得x2+y2-2y=0,
即x2+(y-)2=5.(4分)
(2)將l的參數(shù)方程代入圓C的直角坐標方程,得
(3-t)2+(t)2=5,即t2-3t+4=0.(6分)
由于Δ=(3)2-44=2>0,故可設t1,t2是上述方程的兩實根,所以
又直線l過點P(3,),
故由上式及t的幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2=3.(12分)
方法二 (1)同方法一.
(2)因為圓C的圓心為點(0,),半徑r=,直線l的普通方程為y=-x+3+.(8分)
由得x2- 62、3x+2=0.
解得或(10分)
不妨設A(1,2+),B(2,1+),又點P的坐標為(3,),
故|PA|+|PB|=+=3.(12分)
11.解 (1)當α=時,C1的普通方程為y=(x-1),C2的普通方程為x2+y2=1,聯(lián)立方程組解得C1與C2的交點坐標為(1,0),(,-).(7分)
(2)C1的普通方程為xsin α-ycos α-sin α=0.
A點坐標為(sin2α,-cos αsin α),
故當α變化時,P點軌跡的參數(shù)方程為
(α為參數(shù)).(9分)
P點軌跡的普通方程為(x-)2+y2=.(12分)
故P點軌跡是圓心為(,0),半徑為的圓.
(14 63、分)
76 不等式選講
(一)絕對值不等式
導學目標:1.理解絕對值的幾何意義,并能利用含絕對值不等式的幾何意義證明以下不等式:(1)|a+b|≤|a|+|b|,(2)|a-b|≤|a-c|+|c-b|.2.會利用絕對值的幾何意義求解以下類型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.
自主梳理
1.含________________的不等式叫做絕對值不等式.
2.解含有絕對值的不等式的方法關(guān)鍵是去掉絕對值符號,基本方法有如下幾種:
(1)分段討論:
根據(jù)|f(x)|=去掉絕對值符號.
(2)利用等價不等式:
|f(x)|≤g(x) 64、?-g(x)≤f(x)≤g(x);
|f(x)|≥g(x)?f(x)≤-g(x)或f(x)≥g(x).
(3)兩端同時平方:即運用移項法則,使不等式兩邊都變?yōu)榉秦摂?shù),再平方,從而去掉絕對值符號.
3.形如|x-a|+|x-b|≥c (a≠b)與|x-a|+|x-b|≤c (a≠b)的絕對值不等式的解法主要有三種:
(1)運用絕對值的幾何意義;
(2)____________________;
(3)構(gòu)造分段函數(shù),結(jié)合函數(shù)圖象求解.
4.(1)定理:如果a,b,c是實數(shù),則|a-c|≤|a-b|+|b-c|,當且僅當____________時,等號成立.
(2)重要絕對值不等式| 65、|a|-|b||≤|ab|≤|a|+|b|.
使用時(特別是求最值時)要注意等號成立的條件,即
|a+b|=|a|+|b|?ab≥0;
|a-b|=|a|+|b|?ab≤0;
|a|-|b|=|a+b|?b(a+b)≤0;
|a|-|b|=|a-b|?b(a-b)≥0;
注:|a|-|b|=|a+b|?|a|=|a+b|+|b|?|(a+b)-b|=|a+b|+|b|?b(a+b)≤0.
同理可得|a|-|b|=|a-b|?b(a-b)≥0.
自我檢測
1.(2010江西)不等式>的解集是( )
A.(0,2) B.(-∞,0)
C.(2,+∞) D. 66、(-∞,0)∪(0,+∞)
2.(2011天津)已知集合A={x∈R||x+3|+|x-4|≤9},B={x∈R|x=4t+-6,t∈(0,+∞)},則集合A∩B=________.
3.(2011濰坊模擬)已知不等式|x+2|+|x-3|≤a的解集不是空集,則實數(shù)a的取值范圍是( )
A.a(chǎn)<5 B.a(chǎn)≤5
C.a(chǎn)>5 D.a(chǎn)≥5
4.若不等式|x+1|+|x-2|7+x;
(3)|x-1|+|2x+1|<2.
變式遷移1 (2011江蘇)解不等式x+
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學下冊6整理和復習2圖形與幾何第7課時圖形的位置練習課件新人教版
- 2023年六年級數(shù)學下冊6整理和復習2圖形與幾何第1課時圖形的認識與測量1平面圖形的認識練習課件新人教版
- 2023年六年級數(shù)學下冊6整理和復習1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習課件新人教版
- 2023年六年級數(shù)學下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認識作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊2百分數(shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊1負數(shù)第1課時負數(shù)的初步認識作業(yè)課件新人教版
- 2023年六年級數(shù)學上冊期末復習考前模擬期末模擬訓練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學上冊易錯清單十二課件新人教版
- 標準工時講義
- 2021年一年級語文上冊第六單元知識要點習題課件新人教版
- 2022春一年級語文下冊課文5識字測評習題課件新人教版
- 2023年六年級數(shù)學下冊6整理和復習4數(shù)學思考第1課時數(shù)學思考1練習課件新人教版