《3的倍數(shù)特征》教學(xué)反思
《《3的倍數(shù)特征》教學(xué)反思》由會(huì)員分享,可在線閱讀,更多相關(guān)《《3的倍數(shù)特征》教學(xué)反思(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、《3的倍數(shù)特征》教學(xué)反思 《3的倍數(shù)特征》教學(xué)反思1 【初次實(shí)踐】 課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰(shuí)先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識(shí)時(shí)務(wù)者”打亂了課前的預(yù)想?!袄蠋?,我知道其中的秘密,只要把各個(gè)數(shù)位上的數(shù)加起來(lái),看看是不是3的倍數(shù)就行了!”“對(duì)!在數(shù)學(xué)書上就有這句話?!薄钟袔讉€(gè)學(xué)生偷偷地打開了數(shù)學(xué)書?!霸趺崔k?”謎底都被學(xué)生揭開了。面對(duì)這一生成,我沒(méi)有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來(lái),驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……
2、 [反思] 課堂上經(jīng)常會(huì)出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識(shí)和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識(shí)的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過(guò)程真能取代“探究發(fā)現(xiàn)”的過(guò)程嗎??jī)H僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒(méi)有尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功
3、的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢? 【再次實(shí)踐】 ?。ㄅc第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來(lái)。) 師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)? 生:只和一個(gè)數(shù)的個(gè)位有關(guān)。 師:與今天學(xué)習(xí)的知識(shí)比較一下,你有什么疑問(wèn)嗎? 生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行? 生2:為什么判斷一個(gè)數(shù)是不是2、5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和? ……
4、 師:同學(xué)們思考問(wèn)題確實(shí)比較深入,提出了非常有研究?jī)r(jià)值的問(wèn)題。那我們先來(lái)研究一下2、5的倍數(shù)為什么只和它的個(gè)位有關(guān)。 ?。▽W(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡(jiǎn)單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。) 生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個(gè)位擺幾就可以了。 生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是2、5的倍數(shù)。 師:同學(xué)們想到用“拆數(shù)”的方法來(lái)研究,是個(gè)好辦法。 生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3
5、的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來(lái)是不是3的倍數(shù)就行了。 生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。 生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。 生(部分):對(duì)。 生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎? 生6:也就是說(shuō)整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的
6、數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。 師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢? 學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過(guò)千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來(lái)越清晰。 師:同學(xué)們通過(guò)自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征?,F(xiàn)在你還有哪些新的探索想法呢? 生1:我想知道4的倍數(shù)有什么特征? 生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎?、整千?shù)一定都是4的倍數(shù)。 師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒! 生3:7或9的
7、倍數(shù)有什么特征呢? …… 師:同學(xué)們又提出了一些新的、非常有價(jià)值的問(wèn)題,課后可以繼續(xù)進(jìn)行探索。 [反思] 1. 找準(zhǔn)知識(shí)間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來(lái)研究。于是新舊知識(shí)之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來(lái)研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺(jué)地進(jìn)入到自主探究的狀態(tài)之中。知識(shí)不是孤立的,新舊知識(shí)有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識(shí)間的
8、沖突并巧妙激發(fā)出來(lái),就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對(duì)新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。 2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對(duì)比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對(duì)于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識(shí)的對(duì)比,將困惑激發(fā)出來(lái),通過(guò)學(xué)生間相互啟發(fā)、相互質(zhì)疑,對(duì)問(wèn)題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過(guò)程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)
9、生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對(duì)這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ?,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對(duì)這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。 3. 溝通知識(shí)間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過(guò)“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過(guò)程中建構(gòu)起對(duì)數(shù)的倍數(shù)特征的
10、整體認(rèn)識(shí),感悟數(shù)學(xué)其實(shí)就是以一馭萬(wàn),以簡(jiǎn)馭繁。課堂不是句號(hào),學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對(duì)于一堂課知識(shí)的掌握,而應(yīng)著眼于學(xué)生對(duì)于解決問(wèn)題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。 《3的倍數(shù)特征》教學(xué)反思2 《3 的倍數(shù)和特征》一課是在學(xué)生自主探究2、5的倍數(shù)的特征的基礎(chǔ)上進(jìn)一步學(xué)習(xí),我從學(xué)生的已有基礎(chǔ)出發(fā),把復(fù)習(xí)和導(dǎo)入有機(jī)結(jié)合起來(lái),通過(guò)2、5的倍數(shù)特征的復(fù)習(xí),設(shè)置了“陷阱”,引導(dǎo)學(xué)生進(jìn)行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認(rèn)知沖突,激發(fā)學(xué)生的求知欲望,經(jīng)歷新知的產(chǎn)生過(guò)程。 一、引發(fā)猜想,產(chǎn)生沖突。 前一課時(shí),學(xué)生在發(fā)現(xiàn)2、5的倍數(shù)特征時(shí),都是
11、從個(gè)位上研究起的,所以在復(fù)習(xí)舊知時(shí),我也特意強(qiáng)調(diào)了這一點(diǎn)。接下來(lái)我引導(dǎo)學(xué)生猜想3 的倍數(shù)特征是什么時(shí),不少學(xué)生知識(shí)遷移,提出:個(gè)位上是3、6、9的數(shù)應(yīng)該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當(dāng)然需要驗(yàn)證,很快就有學(xué)生在觀察百數(shù)表后提出問(wèn)題:個(gè)位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學(xué)生的第一猜想被自己否決了。既然沒(méi)有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學(xué)生就開始了繁雜的計(jì)算,這個(gè)環(huán)節(jié)我給了他們時(shí)間慢慢去算,用意在于體會(huì)這種計(jì)算的不方便,從而去想有沒(méi)有更好的方法去判斷一個(gè)數(shù)是否是3 的倍數(shù)。 二、自主探究
12、,建構(gòu)特征 找3 的倍數(shù)的特征是本節(jié)課的難點(diǎn),我處理這個(gè)難點(diǎn)時(shí)力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索并掌握找一個(gè)3的倍數(shù)的特征的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。 在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導(dǎo)學(xué)生觀察發(fā)現(xiàn)3的倍數(shù)的個(gè)位可以是0~9中任何一個(gè)數(shù)字,要判斷一個(gè)數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個(gè)位,打破了學(xué)生的認(rèn)知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問(wèn)題。這個(gè)問(wèn)題的解決需要借助計(jì)數(shù)器,于是我給學(xué)生準(zhǔn)備了簡(jiǎn)易計(jì)數(shù)器,讓學(xué)生多次撥數(shù)后,觀察算
13、珠的個(gè)數(shù)有什么共同的特點(diǎn)。反應(yīng)比較快的學(xué)生就有了發(fā)現(xiàn):所用的算珠個(gè)數(shù)都是3 的倍數(shù)。在學(xué)生提出這個(gè)猜想后,全班學(xué)生再一次進(jìn)行驗(yàn)證第二個(gè)猜想,這個(gè)驗(yàn)證也是在突破難點(diǎn),學(xué)生在驗(yàn)證中掌握難點(diǎn)。同時(shí),我也讓學(xué)生對(duì)比了之前所用的方法,體驗(yàn)這個(gè)新方法的快捷與簡(jiǎn)便,讓學(xué)生的印象更深刻。這個(gè)教學(xué)環(huán)節(jié)在教師的引導(dǎo)下克服困難,解決了力所能及的問(wèn)題,達(dá)到了新的平衡,開發(fā)了學(xué)生的創(chuàng)新潛能。 在教學(xué)過(guò)程中讓學(xué)生自主探索,雖然用了很多時(shí)間,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生的收獲會(huì)更多。 三、鞏固內(nèi)化,拓展提高。 在上述教學(xué)過(guò)程中,雖然每個(gè)同學(xué)只操作了一兩次,但是通過(guò)學(xué)生之間的合作交流,在教師的引導(dǎo)下,學(xué)
14、生經(jīng)歷了一個(gè)典型的通過(guò)不完全 歸納的方法得出規(guī)律的過(guò)程。學(xué)生在這一過(guò)程中的體驗(yàn),無(wú)論是方法層面,還是思想層面均將對(duì)后繼的學(xué)習(xí)產(chǎn)生深刻的影響。 在初步感知3 的倍數(shù)的特征后,我提出了問(wèn)題:一個(gè)數(shù),在計(jì)數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對(duì)嗎?你是否認(rèn)為我們研究出的結(jié)論對(duì)所有的數(shù)都適用呢?這兩個(gè)問(wèn)題的提出,意義在于通過(guò)“更大的數(shù)”和“任意找”兩方面,使學(xué)生深切體驗(yàn)了不完全歸納法的這一要義,同時(shí)也培養(yǎng)了學(xué)生縝密思考問(wèn)題的意識(shí)和習(xí)慣。 《3的倍數(shù)特征》教學(xué)反思3 《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的
15、數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。 一、猜想:讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”。 二、驗(yàn)證::先讓學(xué)生在百數(shù)圖中找找看,顯然像13、16、1
16、9等等的數(shù)不是3的倍數(shù),學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。 三、探究:在此基礎(chǔ)上,讓學(xué)生在百數(shù)圖中找出3的倍數(shù)的數(shù),如果把這些3的倍數(shù)的個(gè)位數(shù)字和十位數(shù)字進(jìn)行調(diào)換,它還是3的倍數(shù)嗎?(讓學(xué)生動(dòng)手驗(yàn)證) 12→2115→5118→8124→4227→72 我們發(fā)現(xiàn)調(diào)換位置后還是3的倍數(shù),那3的倍數(shù)有什么奧妙呢? 如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。 四、驗(yàn)證:下面各數(shù),哪些數(shù)是3的倍數(shù)呢? 2105421612992319876 小結(jié):從上面可知,一個(gè)數(shù)各位上的數(shù)字之和如果是
17、3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。這樣結(jié)論的得出水到渠成。 《3的倍數(shù)特征》教學(xué)反思4 3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過(guò)程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè):“各位上的數(shù)字加起來(lái)是3,6,9一定是
18、3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說(shuō)是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。 下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過(guò)交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動(dòng)手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的
19、神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。 “試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性??上г谶@一點(diǎn)上,我很倉(cāng)促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒(méi)有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)
20、了一系列習(xí)題,使學(xué)生得到鞏固提高。 整節(jié)課只能說(shuō)順利地走了下來(lái),對(duì)于教者我來(lái)說(shuō)從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請(qǐng)教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。 《3的倍數(shù)特征》教學(xué)反思5 《3的倍數(shù)的特征》的教學(xué)是在第一次教學(xué)之后,學(xué)校組織縣級(jí)教學(xué)能手選撥賽時(shí)候第二次上,可以說(shuō)是“一課兩上”。我在第二次備課時(shí)完全從另一個(gè)角度來(lái)處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下: 第一次上課我是讓學(xué)生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的特征,然后實(shí)際應(yīng)用,鞏固練習(xí)。效果一般。而第二次上課時(shí)我是這樣做的:使
21、學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,在學(xué)習(xí)2、5倍數(shù)特征的基礎(chǔ)上,讓學(xué)生猜測(cè)是不是3的倍數(shù)的特征也要去看數(shù)的個(gè)位呢,進(jìn)而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的倍數(shù)的特征,接著借助學(xué)生熟悉的計(jì)數(shù)器進(jìn)行兩個(gè)實(shí)驗(yàn),實(shí)驗(yàn)一:驗(yàn)證3的倍數(shù)的特診,實(shí)驗(yàn)二:驗(yàn)證不是3的倍數(shù)的的數(shù)的特征。最后實(shí)踐應(yīng)用,課堂檢測(cè)。 整個(gè)教學(xué)過(guò)程突出了對(duì)學(xué)生“提出問(wèn)題—探索問(wèn)題—解決問(wèn)題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動(dòng)中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會(huì),激發(fā)學(xué)生的創(chuàng)新欲望,
22、學(xué)生的創(chuàng)造意識(shí)才能得以培養(yǎng),個(gè)性才能充分發(fā)展。 反思這節(jié)課的不足我覺(jué)得在每個(gè)環(huán)節(jié)的過(guò)渡上要做的更加自然、一氣呵成會(huì)更好。由于本節(jié)課按照賽教要求只有30分鐘,時(shí)間的把握做的還不夠恰到好處??傊虩o(wú)定法,學(xué)海無(wú)涯,需要我不斷的學(xué)習(xí)和實(shí)踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學(xué)質(zhì)量。 《3的倍數(shù)特征》教學(xué)反思6 《3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中一個(gè)知識(shí)點(diǎn),是在學(xué)生已認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來(lái)。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來(lái)判斷,必
23、須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。因而在《3的倍數(shù)的特征》的開始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2。5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問(wèn)題中, 得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說(shuō)3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒(méi)有關(guān)系,因此要從另外的角度來(lái)觀察和思考。 在問(wèn)題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問(wèn),激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問(wèn)題:把 3 的倍數(shù)的各
24、位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征 。學(xué)生在經(jīng)歷了猜測(cè)、分析、判斷、驗(yàn)證、概括、等一系列的數(shù)學(xué)活動(dòng)后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學(xué)生明確3的倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實(shí)許多,之后的知識(shí)應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。 這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒(méi)有做足,所以誤導(dǎo)了學(xué)生。題目如下:“從3、0、4、5這四個(gè)數(shù)中,選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足以下條件:
25、1、是3的倍數(shù)。2、同時(shí)是2和3的倍數(shù)。3、同時(shí)是3和5的倍數(shù)。4、同時(shí)是2、3和5的倍數(shù)?!睂W(xué)生問(wèn)要寫幾個(gè)時(shí),我回答如果數(shù)量很多至少寫3個(gè)。呵呵,其實(shí)此題不需要如此考慮,因?yàn)樗鼈兊臄?shù)量都有限。 希望以后自己的教學(xué)會(huì)更扎實(shí)起來(lái)。 《3的倍數(shù)特征》教學(xué)反思7 《3 的倍數(shù)的特征》本節(jié)課的教學(xué)活動(dòng),注重學(xué)生實(shí)踐操作,展開探究活動(dòng),組織學(xué)生進(jìn)行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過(guò)程,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進(jìn)行觀課的,本節(jié)課有五個(gè)環(huán)節(jié)包括:一、復(fù)習(xí)舊知,直接導(dǎo)入。二、自主探究,合作驗(yàn)證。三、總結(jié)提升,共同驗(yàn)證。四、運(yùn)
26、用結(jié)論,鞏固訓(xùn)練。五、全課小結(jié),課后延伸。每個(gè)環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計(jì)合理。下面就說(shuō)一下自己的想法。 一、以舊帶新,引入新課。 趙老師先復(fù)習(xí)了2、5的倍數(shù)的特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問(wèn)題中,由此萌發(fā)疑問(wèn),激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問(wèn)題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。 二、親身經(jīng)歷,探索規(guī)律。 本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進(jìn)而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要
27、小棒的根數(shù)是3的倍數(shù),擺出來(lái)的數(shù)就是3的倍數(shù)?!苯處煂ⅰ皠?dòng)手?jǐn)[小棒”升級(jí)為“腦中撥計(jì)數(shù)器”,將“直觀性思維”升華為“理性思維”,通過(guò)小組交流、集體驗(yàn)證,學(xué)生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”的探究過(guò)程,實(shí)現(xiàn)課程、師生、知識(shí)等多層次的互動(dòng)。 三、精心選題,鞏固新知。 習(xí)題的設(shè)計(jì)力爭(zhēng)在突出重點(diǎn),突破難點(diǎn),遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計(jì)了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機(jī)聯(lián)系起來(lái),使
28、學(xué)生體會(huì)到數(shù)學(xué)在現(xiàn)實(shí)生活中作用和價(jià)值,初步學(xué)會(huì)用數(shù)學(xué)的眼光去觀察事物、思考問(wèn)題,樹立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。 四、回顧梳理,舉一反。 在學(xué)生學(xué)習(xí)的過(guò)程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個(gè)環(huán)節(jié)設(shè)計(jì)了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”,使其在數(shù)學(xué)思想上做進(jìn)一步的提升。 《3的倍數(shù)特征》教學(xué)反思8 《3的倍數(shù)的特征》的教學(xué)是五年級(jí)數(shù)學(xué)上冊(cè)第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識(shí)點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。 3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5
29、的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問(wèn)題,下面我進(jìn)行做幾點(diǎn)反思。 1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵 在導(dǎo)入環(huán)節(jié),我通過(guò)復(fù)習(xí)舊知識(shí)進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái),盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生
30、發(fā)現(xiàn)卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的`認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。 2、經(jīng)歷過(guò)程,授之以漁 猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這
31、個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來(lái),學(xué)生不僅學(xué)會(huì)本節(jié)課知識(shí),更掌握了科學(xué)的探究方法。 3、追求本真,知其所以然 本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對(duì)學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來(lái)沒(méi)有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無(wú)疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語(yǔ)權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。 《3的倍數(shù)特征》教學(xué)反思9 3的
32、倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè)“個(gè)位上的數(shù)字加起來(lái)是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說(shuō)是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。 下面進(jìn)入驗(yàn)證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號(hào)是不
33、是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過(guò)交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進(jìn)入到動(dòng)手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。 “試一試”是數(shù)學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。 《3的倍數(shù)特征》教學(xué)反思10 本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后
34、讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個(gè)別同學(xué)可能是受上節(jié)課的影響,說(shuō)出了:個(gè)位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。 然后我就出示計(jì)數(shù)器,依次撥出3的倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會(huì)到有幾顆珠子就是各個(gè)數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個(gè)數(shù)位上數(shù)的和是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。說(shuō)實(shí)話,學(xué)生對(duì)于這一規(guī)律,不是很容易接受,在后來(lái)的練習(xí)中,才慢慢體會(huì)到。 “想想做做”的五道題設(shè)計(jì)得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過(guò)交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。 《3
35、的倍數(shù)特征》教學(xué)反思11 《3的倍數(shù)的特征》是五年級(jí)下冊(cè)數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識(shí)點(diǎn),是在學(xué)生已經(jīng)認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來(lái)。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。 因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問(wèn)題中,得出:個(gè)位上是3、6、9的數(shù)是3的倍
36、數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說(shuō)3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒(méi)有關(guān)系,因此要從另外的角度來(lái)觀察和思考。在問(wèn)題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問(wèn),激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問(wèn)題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來(lái),經(jīng)過(guò)進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。 為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如493=147,1663=498等,使學(xué)
37、生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個(gè)數(shù),利用這一結(jié)論來(lái)驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而36973也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過(guò)這樣的方式也使學(xué)生認(rèn)識(shí)到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。 為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過(guò)不同的排列,再讓學(xué)生判斷,以加深對(duì)“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。 利用2、5、3的倍數(shù)的特征來(lái)判斷一個(gè)數(shù)是不是2、5或3的倍
38、數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。 這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過(guò)自主選擇研究?jī)?nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識(shí)。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過(guò)程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。 《3的倍數(shù)特征》教學(xué)反思12 在執(zhí)教《2
39、、5、3的倍數(shù)的特征》后,我針對(duì)本節(jié)課的教學(xué)情況進(jìn)行反思。 一、跨年級(jí)學(xué)習(xí)新數(shù)學(xué)知識(shí),知識(shí)銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。 雖然2、5、3的倍數(shù)的特征看起來(lái)很簡(jiǎn)單,探究的過(guò)程可能沒(méi)有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識(shí)銜接問(wèn)題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過(guò),因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來(lái),這些概念比較抽象,學(xué)生一時(shí)難以掌握。 二、為了體現(xiàn)“容量大”,教學(xué)延堂。 備課時(shí)也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來(lái)學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍
40、數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時(shí)間和機(jī)會(huì)就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來(lái)可能會(huì)有一定的難度,最好單獨(dú)作為一課時(shí)學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測(cè)試拖堂了。 三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。 高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會(huì)學(xué),學(xué)會(huì),在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過(guò)展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時(shí)安排按先后順序進(jìn)行,沒(méi)體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。 《3的倍數(shù)特征》教學(xué)反思13 《3
41、的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過(guò)2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來(lái)判斷,學(xué)生理解起來(lái)有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過(guò)程中,概括歸納出了3的倍數(shù)特征。 1、找準(zhǔn)知識(shí)沖突激發(fā)探索愿望。 找準(zhǔn)備知識(shí)中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對(duì)一些數(shù)據(jù)做出了判斷而后我們“誰(shuí)來(lái)猜測(cè)一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看
42、一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過(guò)來(lái)。但實(shí)際上,卻不是這樣,于是新舊知識(shí)間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識(shí)的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對(duì)新知識(shí)的掌握,有效的將新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。 2、激發(fā)學(xué)習(xí)中的困惑,讓探究走向深入。 找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來(lái),這是一節(jié)課的出彩之處,而我從孩子們的學(xué)號(hào)為入重點(diǎn),讓孩子們判斷自己的學(xué)號(hào)是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關(guān)系。但和這個(gè)數(shù)的個(gè)位上的數(shù)字有關(guān)。使之所探究的問(wèn)題是漸漸完整而
43、清晰,而后我又組織孩子們用擺小棒的方法來(lái)探究和驗(yàn)證,這種層層遞進(jìn)環(huán)環(huán)相扣的方法,促使探究活動(dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。 3、課后反思使之完美。 這節(jié)課結(jié)束后,我感覺(jué)最大的缺憾之處,最后點(diǎn)選了的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說(shuō),說(shuō)透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過(guò)打手勢(shì)的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對(duì)解決問(wèn)題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動(dòng)力。 《3的倍數(shù)特征》教學(xué)反思14 3的倍數(shù)是在學(xué)習(xí)了2、5的倍數(shù)特征的基礎(chǔ)上進(jìn)
44、行學(xué)習(xí)的,我讓孩子們提前進(jìn)行了預(yù)習(xí),通過(guò)授課發(fā)現(xiàn)孩子們的預(yù)習(xí)沒(méi)有達(dá)到預(yù)想的效果。學(xué)生在匯報(bào)時(shí)能夠圈出3的倍數(shù),而且非常準(zhǔn)確,在匯報(bào)3的倍數(shù)的方法時(shí),他們大多數(shù)是借助結(jié)論得出來(lái)的,沒(méi)有體現(xiàn)出他們研究的過(guò)程。因此,我在課上進(jìn)行了及時(shí)的指導(dǎo),把孩子們需要匯報(bào)的過(guò)程進(jìn)行了詳細(xì)的說(shuō)明。孩子們很快理解了我的意思,立刻進(jìn)行了新的分工。第一位同學(xué)匯報(bào)了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個(gè)數(shù)除以3,看商是不是整數(shù)而且沒(méi)有余數(shù)。接下來(lái)匯報(bào)百數(shù)表中前十個(gè)3的倍數(shù),讓大家觀察個(gè)位上的數(shù)字,通過(guò)觀察發(fā)現(xiàn)3的倍數(shù)個(gè)位上是0-9的任意一個(gè)數(shù),不能像2、5的倍數(shù)特征只看個(gè)位的特殊數(shù)就行了。因此只看個(gè)位不能確
45、定是不是3的倍數(shù)。 由于孩子們有了提前的預(yù)習(xí),孩子們心目中已經(jīng)有了結(jié)論。因此在這個(gè)時(shí)候孩子們思考的深度不夠,沒(méi)有理解教材的意圖。教師把教材的意圖有意識(shí)地進(jìn)行了滲透,讓學(xué)生駐足片刻,把握課堂的結(jié)構(gòu)。 第三個(gè)環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個(gè)數(shù)的各位逐漸加一,十位逐漸減一,因此個(gè)位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結(jié)結(jié)論:兩位數(shù)個(gè)位上和十位上的數(shù)字之和是3的倍數(shù),那么這個(gè)數(shù)也是3的倍數(shù)。 第四個(gè)環(huán)節(jié),其實(shí)并不是把3的倍數(shù)特征總結(jié)出來(lái)了就完成任務(wù)了。這個(gè)結(jié)論只是通過(guò)觀察百數(shù)表得出的關(guān)于兩位數(shù)的結(jié)論,兩位數(shù)滿足這個(gè)特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個(gè)
46、三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個(gè)結(jié)論進(jìn)行驗(yàn)證,看是否符合。孩子們先試著寫幾個(gè)3的倍數(shù),老師羅列到黑板上,然后分別用用各個(gè)數(shù)位之和相加的方法和除以3是否有余數(shù)的方法進(jìn)行驗(yàn)證。驗(yàn)證的結(jié)果是肯定的,因此得出的結(jié)論適合所有的數(shù)。 到這里孩子們對(duì)于3的倍數(shù)特征已經(jīng)理解的很透徹了,做起練習(xí)來(lái)也顯得得心應(yīng)手。孩子體驗(yàn)了結(jié)論得出的過(guò)程,每一個(gè)環(huán)節(jié)的設(shè)計(jì)都有他的意圖,在每個(gè)環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學(xué)課。 《3的倍數(shù)特征》教學(xué)反思15 3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個(gè)位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過(guò)練習(xí)回顧舊知:2的倍數(shù)與5的
47、倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來(lái)是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點(diǎn)是非常不錯(cuò)的。 學(xué)生進(jìn)行猜想后,我并沒(méi)有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時(shí),我還是沒(méi)有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問(wèn)題解決不了時(shí),我們可以向課本求助。然后問(wèn)學(xué)生“各位上的數(shù)字的和是3
48、的倍數(shù)是什么意思?請(qǐng)結(jié)合舉例說(shuō)說(shuō)?!苯酉聛?lái)將數(shù)擴(kuò)到百以上,通過(guò)各種方式舉正反例通過(guò)計(jì)算來(lái)驗(yàn)證從而得出3的倍數(shù)的特征。最后比較驗(yàn)證之前的猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時(shí),我們也要質(zhì)疑,通過(guò)舉例來(lái)驗(yàn)證。鼓勵(lì)學(xué)生對(duì)知識(shí)要敢于質(zhì)疑,敢于通過(guò)各種方式去驗(yàn)證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。 在教學(xué)中,我能有效獲取課堂生成資源,同時(shí)也注重方法的指導(dǎo)。比如:同桌舉例驗(yàn)證時(shí),涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時(shí)間,讓后問(wèn):還有更加簡(jiǎn)便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來(lái)很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時(shí),我的課件中有個(gè)數(shù)“99”忘記沒(méi)有圈好,學(xué)生發(fā)現(xiàn)了這問(wèn)題。在這里,我是表?yè)P(yáng)了發(fā)現(xiàn)此問(wèn)題的學(xué)生,老師故意說(shuō):我是特意沒(méi)有圈的,看我們的學(xué)生觀察是否仔細(xì),考慮問(wèn)題是否全面……,把原本的錯(cuò)誤變成良好的教學(xué)資源。練習(xí)的設(shè)計(jì)業(yè)很有層次與梯度,聯(lián)系生活實(shí)際。 本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗(yàn)證的過(guò)程中,學(xué)生的計(jì)算還不夠,學(xué)生親自從算中去體會(huì)更好;總結(jié)不太及時(shí),從及時(shí)總結(jié)中提煉、提升會(huì)更好。
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語(yǔ)文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語(yǔ)文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版