高考數(shù)學(xué)人教A版理科含答案配套訓(xùn)練 4.1
《高考數(shù)學(xué)人教A版理科含答案配套訓(xùn)練 4.1》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)人教A版理科含答案配套訓(xùn)練 4.1(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 精品資料 4.1 任意角、弧度制及任意角的三角函數(shù) 1. 角的概念 (1)任意角:①定義:角可以看成平面內(nèi)的一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形;②分類:角按旋轉(zhuǎn)方向分為正角、負(fù)角和零角. (2)所有與角α終邊相同的角,連同角α在內(nèi),構(gòu)成的角的集合是S={β|β=k360+α,k∈Z}. (3)象限角:使角的頂點與坐標(biāo)原點重合,角的始邊與x軸的非負(fù)半軸重合,那么,角的終邊在第幾象限,就說這個角是第幾象限角;如果角的終邊在坐標(biāo)軸上,那么這個角不屬于任何一個象限. 2. 弧度制 (1)定義:把長度等于
2、半徑長的弧所對的圓心角叫做1弧度的角,正角的弧度數(shù)是正數(shù),負(fù)角的弧度數(shù)是負(fù)數(shù),零角的弧度數(shù)是0. (2)角度制和弧度制的互化:180=π rad,1= rad,1 rad=. (3)扇形的弧長公式:l=|α|r,扇形的面積公式:S=lr=|α|r2. 3. 任意角的三角函數(shù) 任意角α的終邊與單位圓交于點P(x,y)時,sin α=y(tǒng),cos α=x,tan α=(x≠0).三個三角函數(shù)的初步性質(zhì)如下表: 三角函數(shù) 定義域 第一象限符號 第二象 限符號 第三象 限符號 第四象 限符號 sin α R + + - - cos α R + - - +
3、 tan α {α|α≠kπ+, k∈Z} + - + - 4. 三角函數(shù)線 如下圖,設(shè)角α的終邊與單位圓交于點P,過P作PM⊥x軸,垂足為M,過A(1,0)作單位圓的切線與α的終邊或終邊的反向延長線相交于點T. 三角函數(shù)線 (Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ) 有向線段MP為正弦線;有向線段OM為余弦線;有向線段AT為正切線 1. 判斷下面結(jié)論是否正確(請在括號中打“√”或“”) (1)小于90的角是銳角. ( ) (2)銳角是第一象限角,反之亦然. ( ) (3)終邊相同的角的同一三角
4、函數(shù)值相等. ( √ ) (4)點P(tan α,cos α)在第三象限,則角α終邊在第二象限. ( √ ) (5)α∈(0,),則tan α>α>sin α. ( √ ) (6)α為第一象限角,則sin α+cos α>1. ( √ ) 2. 下列與的終邊相同的角的表達(dá)式中正確的是 ( ) A.2kπ+45 (k∈Z) B.k360+π (k∈Z) C.k360-315(k∈Z) D.kπ+ (k∈Z) 答案 C 解析 與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不
5、能混用,所以只有答案C正確. 3. 已知扇形的周長是6 cm,面積是2 cm2,則扇形的圓心角的弧度數(shù)是 ( ) A.1 B.4 C.1或4 D.2或4 答案 C 解析 設(shè)此扇形的半徑為r,弧長為l, 則解得或 從而α===4或α===1. 4. 已知角θ的頂點為坐標(biāo)原點,始邊為x軸的正半軸,若P(4,y)是角θ終邊上一點,且sin θ=-,則y=________. 答案?。? 解析 因為sin θ==-, 所以y<0,且y2=64,所以y=-8. 5. 函數(shù)y=的定義域為________. 答案 (k∈Z) 解析 ∵2cos x-1≥0,
6、 ∴cos x≥. 由三角函數(shù)線畫出x滿足條件的終邊范圍(如圖陰影所示). ∴x∈(k∈Z). 題型一 角及其表示 例1 (1)終邊在直線y=x上的角的集合是________. (2)如果α是第三象限角,那么角2α的終邊落在________. 思維啟迪 (1)利用終邊相同的角的集合進(jìn)行表示,注意對結(jié)果進(jìn)行合并; (2)根據(jù)α的范圍求2α的范圍,再確定終邊位置. 答案 (1){α|α=kπ+,k∈Z} (2)第一、二象限或y軸的非負(fù)半軸上 解析 (1)∵在(0,π)內(nèi)終邊在直線y=x上的角是, ∴終邊在直線y=x上的角的集合為{α|α=+kπ,k∈Z}. (2)∵2k
7、π+π<α<2kπ+π,k∈Z, ∴4kπ+2π<2α<4kπ+3π,k∈Z. ∴角2α的終邊落在第一、二象限或y軸的非負(fù)半軸上. 思維升華 (1)利用終邊相同的角的集合可以求適合某些條件的角,方法是先寫出與這個角的終邊相同的所有角的集合,然后通過對集合中的參數(shù)k賦值來求得所需角. (2)利用終邊相同的角的集合S={β|β=2kπ+α,k∈Z}判斷一個角β所在的象限時,只需把這個角寫成[0,2π)范圍內(nèi)的一個角α與2π的整數(shù)倍的和,然后判斷角α的象限. (1)在直角坐標(biāo)平面內(nèi),對于始邊為x軸非負(fù)半軸的角,下列命題中正確的是 ( ) A.第一象限中
8、的角一定是銳角 B.終邊相同的角必相等 C.相等的角終邊一定相同 D.不相等的角終邊一定不同 (2)已知角α=45,在區(qū)間[-720,0]內(nèi)與角α有相同終邊的角β=________. 答案 (1)C (2)-675或-315 解析 (1)第一象限角是滿足2kπ<α<2kπ+,k∈Z的角,當(dāng)k≠0時,它都不是銳角,與角α終邊相同的角是2kπ+α,k∈Z;當(dāng)k≠0時,它們都與α不相等,亦即終邊相同的角可以不相等,但不相等的角終邊可以相同. (2)由終邊相同的角關(guān)系知β=k360+45,k∈Z, ∴取k=-2,-1,得β=-675或β=-315. 題型二 三角函數(shù)的概念 例2 (
9、1)已知角θ的頂點與原點重合,始邊與x軸的正半軸重合,終邊在直線y=2x上,則cos 2θ等 于 ( ) A.- B.- C. D. (2)若sin αtan α<0,且<0,則角α是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 思維啟迪 (1)由于三角函數(shù)值與選擇終邊上的哪個點沒有關(guān)系,因此知道了終邊所在的直線,可在這個直線上任取一點,然后按照三角函數(shù)的定義來計算,最后用倍角公式求值. (2)可以根據(jù)各象限內(nèi)三角函數(shù)值的符號判斷. 答案 (1)B
10、 (2)C 解析 (1)取終邊上一點(a,2a),a≠0,根據(jù)任意角的三角函數(shù)定義,可得cos θ=,故cos 2θ=2cos2θ-1=-. (2)由sin αtan α<0可知sin α,tan α異號,從而α為第二或第三象限角. 由<0可知cos α,tan α異號,從而α為第三或第四象限角,故α為第三象限角. 思維升華 (1)利用三角函數(shù)的定義,求一個角的三角函數(shù)值,需確定三個量:角的終邊上任意一個異于原點的點的橫坐標(biāo)x,縱坐標(biāo)y,該點到原點的距離r. (2)根據(jù)三角函數(shù)定義中x、y的符號來確定各象限內(nèi)三角函數(shù)的符號,理解并記憶:“一全正、二正弦、三正切、四余弦”. (1)
11、已知角α的終邊過點P(-8m,-6sin 30),且cos α=-,則m的值為
( )
A.- B. C.- D.
(2)若θ是第二象限角,則________0.(判斷大小)
答案 (1)B (2)<
解析 (1)∵r=,∴cos α==-,
∴m>0,∴=,即m=.
(2)∵θ是第二象限角,∴-1
12、所在的弓形的面積; (2)若扇形的周長是一定值C (C>0),當(dāng)α為多少弧度時,該扇形有最大面積? 思維啟迪 (1)弓形面積可用扇形面積與三角形面積相減得到;(2)建立關(guān)于α的函數(shù). 解 (1)設(shè)弧長為l,弓形面積為S弓,則 α=60=,R=10,l=10= (cm), S弓=S扇-S△=10-102sin =π-=50 (cm2). (2)扇形周長C=2R+l=2R+αR,∴R=, ∴S扇=αR2=α2 =α=≤. 當(dāng)且僅當(dāng)α2=4,即α=2時,扇形面積有最大值. 思維升華 涉及弧長和扇形面積的計算時,可用的公式有角度表示和弧度表示兩種,其中弧度表示的公式結(jié)構(gòu)簡單,易
13、記好用,在使用前,應(yīng)將圓心角用弧度表示.弧長和扇形面積公式:l=|α|R,S=|α|R2. 已知扇形的周長為4 cm,當(dāng)它的半徑為________和圓心角為________弧度時,扇形面積最大,這個最大面積是________. 答案 1 cm 2 1 cm2 解析 設(shè)扇形圓心角為α,半徑為r,則 2r+|α|r=4,∴|α|=-2. ∴S扇形=|α|r2=2r-r2=-(r-1)2+1, ∴當(dāng)r=1時(S扇形)max=1,此時|α|=2. 數(shù)形結(jié)合思想在三角函數(shù)中的應(yīng)用 典例:(12分)(1)求函數(shù)y=lg(3-4sin2x)的定義域; (2)設(shè)θ是第二象限角,
14、試比較sin ,cos ,tan 的大?。?
思維啟迪 (1)求定義域,就是求使3-4sin2x>0的x的范圍.用三角函數(shù)線求解.
(2)比較大小,可以從以下幾個角度觀察:
①θ是第二象限角,是第幾象限角?首先應(yīng)予以確定.②sin ,cos ,tan 不能求出確定值,但可以畫出三角函數(shù)線.③借助三角函數(shù)線比較大?。?
規(guī)范解答
解 (1)∵3-4sin2x>0,
∴sin2x<,
∴- 15、<θ<π+2kπ,k∈Z,
∴+kπ<<+kπ,k∈Z,
∴是第一或第三象限的角. [6分]
(如圖陰影部分),結(jié)合單位圓上的三角函數(shù)線可得:
①當(dāng)是第一象限角時,
sin =AB,cos =OA,tan =CT,
從而得,cos 16、馨提醒 (1)第(1)小題的實質(zhì)是解一個簡單的三角不等式,可以用三角函數(shù)圖象,也可以用三角函數(shù)線.但用三角函數(shù)線更方便.(2)第(2)小題比較大小,由于沒有給出具體的角度,所以用圖形可以更直觀的表示.(3)本題易錯點:①不能確定所在的象限;②想不到應(yīng)用三角函數(shù)線.原因在于概念理解不透,方法不夠靈活.
方法與技巧
1. 在利用三角函數(shù)定義時,點P可取終邊上任一點,如有可能則取終邊與單位圓的交點.|OP|=r一定是正值.
2. 三角函數(shù)符號是重點,也是難點,在理解的基礎(chǔ)上可借助口訣:一全正,二正弦,三正切,四余弦.
3. 在解簡單的三角不等式時,利用單位圓及三角函數(shù)線是一個小技巧.
17、失誤與防范
1. 注意易混概念的區(qū)別:象限角、銳角、小于90的角是概念不同的三類角.第一類是象限角,第二、第三類是區(qū)間角.
2. 角度制與弧度制可利用180=π rad進(jìn)行互化,在同一個式子中,采用的度量制度必須一致,不可混用.
3. 已知三角函數(shù)值的符號確定角的終邊位置不要遺漏終邊在坐標(biāo)軸上的情況.
A組 專項基礎(chǔ)訓(xùn)練
(時間:35分鐘,滿分:57分)
一、選擇題
1. α=k180+45(k∈Z),則α在( )
A.第一或第三象限 B.第一或第二象限
C.第二或第四象限 D.第三或第四象限
答案 A
解析 45角在第一象限,角α和45角終 18、邊相同或互為反向延長線,∴角α在第一或第三象限.
2. 若一圓弧長等于其所在圓的內(nèi)接正三角形的邊長,則其圓心角α∈(0,π)的弧度數(shù)為
( )
A. B. C. D.2
答案 C
解析 設(shè)圓半徑為r,則其內(nèi)接正三角形的邊長為r,
所以r=αr,∴α=.
3. 角α的終邊過點P(-1,2),則sin α等于 ( )
A. B. C.- D.-
答案 B
解析 由三角函數(shù)的定義,
得sin α==.
4. 若α是第三象限角,則下列各式中不成立的是 ( )
A.sin α+cos α<0 19、 B.tan α-sin α<0
C.cos α-tan α<0 D.tan αsin α<0
答案 B
解析 在第三象限,sin α<0,cos α<0,tan α>0,則可排除A、C、D,故選B.
5. 給出下列命題:
①第二象限角大于第一象限角;
②三角形的內(nèi)角是第一象限角或第二象限角;
③不論是用角度制還是用弧度制度量一個角,它們與扇形的半徑的大小無關(guān);
④若sin α=sin β,則α與β的終邊相同;
⑤若cos θ<0,則θ是第二或第三象限的角.
其中正確命題的個數(shù)是 ( )
A.1 B.2 C.3 20、 D.4
答案 A
解析 由于第一象限角370不小于第二象限角100,故①錯;當(dāng)三角形的內(nèi)角為90時,其既不是第一象限角,也不是第二象限角,故②錯;③正確;由于sin =sin ,但與的終邊不相同,故④錯;當(dāng)cos θ=-1,θ=π時既不是第二象限角,又不是第三象限角,故⑤錯.綜上可知只有③正確.
二、填空題
6. 設(shè)α為第二象限角,其終邊上一點為P(m,),且cos α=m,則sin α的值為________.
答案
解析 設(shè)P(m,)到原點O的距離為r,
則=cos α=m,
∴r=2,sin α===.
7. 已知角α的終邊上一點的坐標(biāo)為(sin ,cos ),則 21、角α的最小正值為________.
答案 π
解析 ∵tan α===-,
且sin >0,cos <0,
∴α在第四象限,由tan α=-,得α的最小正值為π.
8. y= 的定義域為________.
答案 {x|2kπ+≤x≤2kπ+,k∈Z}
解析 ∵sin x≥,作直線y=交單位圓于A、B兩點,連接OA、OB,則OA與OB圍成的區(qū)域(圖中陰影部分)即為角α的終邊的范圍,故滿足條件的角α的集合為
{x|2kπ+≤x≤2kπ+,k∈Z}.
三、解答題
9. 已知角θ的終邊經(jīng)過點P(-,m) (m≠0)且sin θ=m,試判斷角θ所在的象限,并求cos θ和tan θ的 22、值.
解 由題意,得r=,
所以sin θ==m.
因為m≠0,所以m=,故角θ是第二或第三象限角.
當(dāng)m=時,r=2,點P的坐標(biāo)為(-,),角θ是第二象限角,
所以cos θ===-,
tan θ===-;
當(dāng)m=-時,r=2,點P的坐標(biāo)為(-,-),角θ是第三象限角,
所以cos θ===-,
tan θ===.
10.一個扇形OAB的面積是1 cm2,它的周長是4 cm,求圓心角的弧度數(shù)和弦長AB.
解 設(shè)圓的半徑為r cm,弧長為l cm,
則解得
∴圓心角α==2弧度.
如圖,過O作OH⊥AB于H,則∠AOH=1弧度.
∴AH=1sin 1=sin 1( 23、cm),∴AB=2sin 1(cm).
B組 專項能力提升
(時間:25分鐘,滿分:43分)
1. 設(shè)集合M={x|x=180+45,k∈Z},N={x|x=180+45,k∈Z},那么( )
A.M=N B.M?N
C.N?M D.M∩N=?
答案 B
解析 方法一 由于M={x|x=180+45,k∈Z}={…,-45,45,135,225,…},N={x|x=180+45,k∈Z}={…,-45,0,45,90,135,180,225,…},
顯然有M?N.
方法二 由于集合M中,x=180+45=k90+45
=45(2k+1),2 24、k+1是奇數(shù);
而集合N中,x=180+45=k45+45=(k+1)45,k+1是整數(shù),因此必有M?N.
2. 已知角α=2kπ-(k∈Z),若角θ與角α的終邊相同,則y=++的值為
( )
A.1 B.-1 C.3 D.-3
答案 B
解析 由α=2kπ-(k∈Z)及終邊相同的概念知,角α的終邊在第四象限,
又角θ與角α的終邊相同,所以角θ是第四象限角,
所以sin θ<0,cos θ>0,tan θ<0.
所以y=-1+1-1=-1.
3. 函數(shù)y=+ 的定義域是_____________________________________.
25、答案 (k∈Z)
解析 由題意知即
∴x的取值范圍為+2kπ≤x≤π+2kπ,k∈Z.
4. 已知扇形AOB的周長為8.
(1)若這個扇形的面積為3,求圓心角的大??;
(2)求這個扇形的面積取得最大值時圓心角的大小和弦長AB.
解 設(shè)扇形AOB的半徑為r,弧長為l,圓心角為α,
(1)由題意可得
解得或
∴α==或α==6.
(2)∵2r+l=8,∴S扇=lr=l2r
≤()2=()2=4,
當(dāng)且僅當(dāng)2r=l,即α==2時,扇形面積取得最大值4.
∴r=2,∴弦長AB=2sin 12=4sin 1.
5. 已知sin α<0,tan α>0.
(1)求α角的集合; 26、
(2)求終邊所在的象限;
(3)試判斷tan sin cos 的符號.
解 (1)由sin α<0,知α在第三、四象限或y軸的負(fù)半軸上;
由tan α>0,知α在第一、三象限,
故α角在第三象限,其集合為
{α|(2k+1)π<α<2kπ+,k∈Z}.
(2)由(2k+1)π<α<2kπ+,k∈Z,
得kπ+<
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。