秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

全國通用高考數(shù)學 二輪復習 第一部分 微專題強化練 專題4 函數(shù)與方程、函數(shù)的應用含解析

上傳人:仙*** 文檔編號:43101004 上傳時間:2021-11-30 格式:DOC 頁數(shù):12 大?。?12.50KB
收藏 版權(quán)申訴 舉報 下載
全國通用高考數(shù)學 二輪復習 第一部分 微專題強化練 專題4 函數(shù)與方程、函數(shù)的應用含解析_第1頁
第1頁 / 共12頁
全國通用高考數(shù)學 二輪復習 第一部分 微專題強化練 專題4 函數(shù)與方程、函數(shù)的應用含解析_第2頁
第2頁 / 共12頁
全國通用高考數(shù)學 二輪復習 第一部分 微專題強化練 專題4 函數(shù)與方程、函數(shù)的應用含解析_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《全國通用高考數(shù)學 二輪復習 第一部分 微專題強化練 專題4 函數(shù)與方程、函數(shù)的應用含解析》由會員分享,可在線閱讀,更多相關(guān)《全國通用高考數(shù)學 二輪復習 第一部分 微專題強化練 專題4 函數(shù)與方程、函數(shù)的應用含解析(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 【走向高考】(全國通用)20xx高考數(shù)學二輪復習 第一部分 微專題強化練 專題4 函數(shù)與方程、函數(shù)的應用 一、選擇題 1.若x0是方程x=x的解,則x0屬于區(qū)間(  ) A.        B. C. D. [答案] C [解析] 令f(x)=x-x,f(1)=-1=-<0, f=-<0, f=->0, f=-=-<0, ∴f(x)在區(qū)間內(nèi)有零點. 2.利民工廠某產(chǎn)品的年產(chǎn)量在150t至250t之間,年生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(t)之間的關(guān)系可近似地表示為y=-30x+4000,則每噸的成本最低時的年產(chǎn)量為(  ) A.240 B.200 C

2、.180 D.160 [答案] B [解析] 依題意得每噸的成本是=+-30,則≥2-30=10,當且僅當=,即x=200時取等號,因此當每噸的成本最低時,相應的年產(chǎn)量是200t,選B. 3.(文)(20xx山東理,8)已知函數(shù)f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有兩個不相等的實根,則實數(shù)k的取值范圍是(  ) A.(0,) B.(,1) C.(1,2) D.(2,+∞) [答案] B [解析] 作出函數(shù)y=f(x)的圖象如圖,當y=kx在l1位置時,過A(2,1),∴k=,在l2位置時與l3平行,k=1, ∴

3、函數(shù)f(x)是最小正周期為2π的偶函數(shù),f ′(x)是f(x)的導函數(shù).當x∈[0,π]時,00.則函數(shù)y=f(x)-sinx在[-2π,2π]上的零點個數(shù)為(  ) A.2 B.4 C.5 D.8 [答案] B [分析] 函數(shù)y=f(x)-sinx的零點轉(zhuǎn)化函數(shù)f(x)y=f(x)與y=sinx圖象交點f(x)的范圍確定f ′(x)的正負(x-)f ′(x)>0. [解析] ∵(x-)f ′(x)>0,x∈(0,π)且x≠, ∴當0

4、)>0,f(x)在(,π)上單調(diào)遞增. ∵當x∈[0,π]時,0

5、 B. C. D. [答案] C [解析] 如圖,由圖形可知點(a,b)所在區(qū)域的面積S=4,滿足函數(shù)f(x)=ax+b在區(qū)間(1,2)上存在一個零點的點(a,b)所在區(qū)域面積S′=12=,故所求概率P==. 5.(20xx天津理,8)已知函數(shù)f(x)=函數(shù)g(x)=b-f(2-x),其中b∈R.若函數(shù)y=f(x)-g(x)恰有4個零點,則b的取值范圍是(  ) A. B. C. D. [答案] D [解析] 考查求函數(shù)解析式;函數(shù)與方程及數(shù)形結(jié)合的思想. 由f(x)= 得f(2-x)= 所以y=f(x)+f(2-x) = 即y=f(x)+f(2-x

6、)= y=f(x)-g(x)=f(x)+f(2-x)-b, 所以y=f(x)-g(x)恰有4個零點等價于方程 f(x)+f(2-x)-b=0有4個不同的解,即函數(shù)y=b與函數(shù)y=f(x)+f(2-x)的圖象有4個公共點,由圖象可知

7、向右依次為x1、x2、x3、x4、x5,由對稱性知x1+x2=-π,x3+x4=π, 又π0,f(-1)=1-1----…-<0,f′(x)=1-x+x2-x3+…+x20xx,當x≤0時,f′(x)>0,當x>0時,f′(x)==

8、>0, ∴f′(x)>0在R上恒成立,∴f(x)在R上為增函數(shù), 又f(-1)f(0)<0,∴f(x)只有一個零點, 記作x1,則x1∈(-1,0), g(1)=1-1+-+…+->0, g(2)=1-2+-+…+-<0, 又當x>0時,g′(x)=-1+x-x2+x3+…-x20xx==<0,∴g(x)單調(diào)遞減,∴g(x)也只有一個零點,記為x2,x2∈(1,2),F(xiàn)(x)=f(x+3)g(x-4)有兩個不同零點x3、x4,x3∈(-4,-3),x4∈(5,6),又F(x)的零點均在區(qū)間[a,b]內(nèi),且a

9、1.求f(x)的零點值時,直接令f(x)=0解方程,當f(x)為分段函數(shù)時,要分段列方程組求解; 2.已知f(x)在區(qū)間[a,b]上單調(diào)且有零點時,利用f(a)f(b)<0討論; 3.求f(x)的零點個數(shù)時,一般用數(shù)形結(jié)合法;討論函數(shù)y=f(x)與y=g(x)的圖象交點個數(shù),即方程f(x)=g(x)的解的個數(shù),一般用數(shù)形結(jié)合法. 4.已知零點存在情況求參數(shù)的值或取值范圍時,利用方程思想和數(shù)形結(jié)合思想,構(gòu)造關(guān)于參數(shù)的方程或不等式求解. 7.(文)已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍為(  ) A.(2,+∞) B.(1,+∞)

10、 C.(-∞,-2) D.(-∞,-1) [答案] C [解析] f ′(x)=3ax2-6x=3x(ax-2),若a>0,則f(x)在(-∞,0)和(,+∞)上單調(diào)遞增,在(0,)上單調(diào)遞減,又f(0)=1,∴f(x)不可能存在唯一零點;由選項知a=0不必考慮;a<0時,f(x)在(-∞,)和(0,+∞)上單調(diào)遞減,在(,0)上單調(diào)遞增,欲使f(x)落在唯一零點x0>0,應有極小值f()>0, 即a()3-3()2+1>0,∴a<-2. [點評] 可以用驗證法求解. (理)現(xiàn)有四個函數(shù):①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如下:

11、 則按照從左到右圖象對應的函數(shù)序號安排正確的一組是(  ) A.①④②③ B.①④③② C.④①②③ D.③④②① [答案] A [解析]?、賧=xsinx為偶函數(shù),對應第一個圖;②y=xcosx為奇函數(shù),且x>0時,y可正可負,對應第三個圖;③y=x|cosx|為奇函數(shù),且x>0時,y>0,對應第四個圖;④y=x2x為增函數(shù),對應第二個圖,故選A. 8.已知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當x∈(0,1]時,f(x)=log2x,則在(8,10)內(nèi)滿足方程f(x)+1=f(1)的實數(shù)x為(  ) A. B.9 C. D. [答案] C

12、 [解析] 由條件知f(-x)=f(x) ①,f(-x+1)=-f(x+1) ②,在②式中給x賦值x+1得f(-x)=-f(x+2),將①代入得f(x+2)=-f(x),∴f(x+4)=f(x),∴f(x)的周期為4.在②中令x=0得f(1)=0,∴方程f(x)+1=f(1),化為f(x)=-1,由于f(x)的圖象關(guān)于點(1,0)對稱,當00,令f(x)=-1,(0

13、=2x-3.若函數(shù)f(x)在區(qū)間(k-1,k)(k∈Z)上有零點,則k的值為(  ) A.2或-7 B.2或-8 C.1或-7 D.1或-8 [答案] A [解析] ∵f(1)=-1<0,f(2)=1>0,∴f(x)在(1,2)上有零點,又f(x)的圖象關(guān)于直線x=-3對稱, ∴f(x)在(-8,-7)上有零點,∴k=2或-7. (理)(20xx長沙一模)使得函數(shù)f(x)=x2-x-(a≤x≤b)的值域為[a,b](a

14、在區(qū)間[a,b]上為單調(diào)增函數(shù),故有即a,b是方程f(x)=x的兩根,方程化簡得x2-9x-7=0,易知方程不可能存在兩個不小于2的實根;當b≤2時,函數(shù)f(x)在區(qū)間[a,b]上為單調(diào)遞減函數(shù),故有即消元化簡得a2+a-2=0,∴a=-2或a=1,代入原方程組解得滿足條件的解為即實數(shù)對(-2,1)滿足條件;當a<2

15、定義域上只有一個零點,則實數(shù)a的取值范圍是(  ) A.a(chǎn)> B.a(chǎn)≥ C.a(chǎn)< D.a(chǎn)≤ [答案] A [解析] 當x≤0時,函數(shù)y=-x與函數(shù)y=3x的圖象有一個交點, 所以函數(shù)y=f(x)有一個零點; 而函數(shù)f(x)在其定義域上只有一個零點, 所以當x>0時,f(x)沒有零點. 當x>0時,f ′(x)=x2-4, 令f ′(x)=0得x=2,所以f(x)在(0,2)上遞減, 在(2,+∞)上遞增,因此f(x)在x=2處取得極小值f(2)=a->0,解得a>.故選A. (理)已知定義域為(-1,1]的函數(shù)f(x),對任意x∈(-1,0],f(x+1)=,當x∈[0,

16、1]時,f(x)=x,若在區(qū)間(-1,1]內(nèi)g(x)=f(x)-mx-m有兩個零點,則實數(shù)m的取值范圍是(  ) A.[0,) B.[,+∞) C.[0,) D.(0,] [答案] D [解析] ∵x∈(-1,0]時,x+1∈(0,1],又x∈[0,1]時,f(x)=x,∴f(x+1)=x+1,又f(x+1)=,∴x∈(-1,0]時,f(x)=-1,作出函數(shù)f(x)=的圖象,由于y=m(x+1)過定點(-1,0),∴要使y=m(x+1)與y=f(x)的圖象有兩個交點,應有0

17、數(shù)λ的取值范圍是(  ) A.[-1,1) B.{-1,0} C.(-∞,-1]∪[0,1) D.[-1,0]∪(1,+∞) [答案] A [解析] y=當λ=1時,曲線C與圓x2+y2=4有三個不同公共點,當0<λ<1時,曲線C為焦點在y軸上的橢圓,滿足題設(shè)要求,當λ>1時,不滿足;當λ<0時,曲線C為焦點在x軸上的雙曲線,其漸近線斜率k=,由題意應有≥1,∴-1≤λ<0,綜上知-1≤λ<1. (理)已知函數(shù)f(x)=若方程f(x)=t(t∈R)有四個不同的實數(shù)根x1、x2、x3、x4,則x1x2x3x4的取值范圍為(  ) A.(30,34) B.(30,36) C.(32,

18、34) D.(32,36) [答案] C [解析] 設(shè)四個實數(shù)根滿足x1

19、解得0≤x0≤log2或≤x0≤2,故選C. 二、填空題 13.已知定義域為R的函數(shù)f(x)既是奇函數(shù),又是周期為3的周期函數(shù),當x∈(0,)時,f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是________. [答案] 7 [解析] 易知在(-,)內(nèi),有f(-1)=0,f(0)=0,f(1)=0,即f(x)在一個周期內(nèi)有3個零點,又區(qū)間[0,6]包含f(x)的2個周期,而兩端點都是f(x)的零點,故f(x)在[0,6]內(nèi)有7個零點. 14.設(shè)函數(shù)y=x3與y=()x-2的圖象的交點為(x0,y0).若x0所在的區(qū)間是(n,n+1)(n∈Z),則n=_______

20、_. [答案] 1 [解析] 由函數(shù)圖象知,1

21、log32, ∴f(-1)=a-1-1-b=log32-1-log32=-1<0, f(0)=a0-b=1-log32>0, ∴f(x)在(-1,0)內(nèi)存在零點, 又f(x)為增函數(shù),∴f(x)在(-1,0)內(nèi)只有一個零點, ∴n=-1. 三、解答題 16.(文)設(shè)函數(shù)f(x)=x3+x2-ax+a,其中a>0. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)若方程f(x)=0在(0,2)內(nèi)恰有兩個實數(shù)根,求a的取值范圍; (3)當a=1時,設(shè)函數(shù)f(x)在[t,t+3](t∈(-3,-2))上的最大值為H(t),最小值為h(t),記g(t)=H(t)-h(huán)(t),求函數(shù)g(t)的

22、最小值. [解析] (1)f ′(x)=x2+(a-1)x-a=(x+a)(x-1), 令f ′(x)=0得,x1=1,x2=-a<0, 當x變化時,f ′(x),f(x)變化情況如下表: x (-∞,-a) -a (-a,1) 1 (1,+∞) f ′(x) + 0 - 0 + f(x)  極大值  極小值  函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-a),(1,+∞),單調(diào)減區(qū)間為(-a,1). (2)由(1)知f(x)在(0,1)上單調(diào)遞減,在(1,2)上單調(diào)遞增,從而方程f(x)=0在區(qū)間(0,2)內(nèi)恰有兩個實數(shù)根等價于f(0)>0,f(1

23、)<0,f(2)>0,解得0

24、t),而f(t)在[-3,-2]上單調(diào)遞增,因此f(t)≤f(-2)=, 所以g(t)在[-3,-2]上的最小值為g(-2)=-=. 即函數(shù)g(x)在區(qū)間[-3,-2]上的最小值為. (理)已知函數(shù)f(x)=lnx+ax2+bx(其中a、b為常數(shù)且a≠0)在x=1處取得極值. (1)當a=1時,求f(x)的單調(diào)區(qū)間; (2)若f(x)在(0,e]上的最大值為1,求a的值. [解析] (1)因為f(x)=lnx+ax2+bx,所以f ′(x)=+2ax+b. 因為函數(shù)f(x)=lnx+ax2+bx在x=1處取得極值, f ′(1)=1+2a+b=0. 當a=1時,b=-3,f

25、′(x)=, f ′(x)、f(x)隨x的變化情況如下表: x (0,) (,1) 1 (1,+∞) f ′(x) + 0 - 0 + f(x)  極大值  極小值  所以f(x)的單調(diào)遞增區(qū)間為(0,)和(1,+∞),單調(diào)遞減區(qū)間為(,1). (2)因為f ′(x)==, 令f ′(x)=0得,x1=1,x2=, 因為f(x)在x=1處取得極值,所以x2=≠x1=1, 當<0時,f(x)在(0,1)上單調(diào)遞增,在(1,e]上單調(diào)遞減, 所以f(x)在區(qū)間(0,e]上的最大值為f(1),令f(1)=1,解得a=-2, 當a>0時,x2

26、=>0, 當<1時,f(x)在(0,)上單調(diào)遞增,(,1)上單調(diào)遞減,(1,e)上單調(diào)遞增, 所以最大值1可能在x=或x=e處取得, 而f()=ln+a()2-(2a+1)=ln--1<0, 所以f(e)=lne+ae2-(2a+1)e=1,解得a=; 當1≤

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!