秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

高中數(shù)學第一章 常用邏輯用語選修一7 全稱量詞與存在量詞

上傳人:無*** 文檔編號:51415728 上傳時間:2022-01-25 格式:PPT 頁數(shù):13 大?。?77.50KB
收藏 版權申訴 舉報 下載
高中數(shù)學第一章 常用邏輯用語選修一7 全稱量詞與存在量詞_第1頁
第1頁 / 共13頁
高中數(shù)學第一章 常用邏輯用語選修一7 全稱量詞與存在量詞_第2頁
第2頁 / 共13頁
高中數(shù)學第一章 常用邏輯用語選修一7 全稱量詞與存在量詞_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學第一章 常用邏輯用語選修一7 全稱量詞與存在量詞》由會員分享,可在線閱讀,更多相關《高中數(shù)學第一章 常用邏輯用語選修一7 全稱量詞與存在量詞(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1.4 全稱量詞與存在量詞全稱量詞與存在量詞P21 思考:下列語句是命題嗎?下列語句是命題嗎?(1)與與(3),(2)與與(4)之間有什么關系?之間有什么關系?(1)x3;(2)2x+1是整數(shù);是整數(shù);(3)對所有的對所有的xR,x3;(4)對任意一個對任意一個xZ,2x+1是整數(shù)是整數(shù)。語句語句(1)(2)(1)(2)不能判斷真假,不是命題;不能判斷真假,不是命題;語句語句(3)(4)(3)(4)可以判斷真假,是命題??梢耘袛嗾婕?,是命題。全稱量詞、全稱命題定義:全稱量詞、全稱命題定義:短語短語“所有的所有的”“”“任意一個任意一個”在邏輯中通常叫做全稱量詞,并在邏輯中通常叫做全稱量詞,并用

2、符號用符號“ ”“ ”表示。表示。含有全稱量詞的命題,叫做全稱命題。含有全稱量詞的命題,叫做全稱命題。常見的全稱量詞還有常見的全稱量詞還有“一切一切” “每一個每一個” “任給任給” “所有的所有的”等等 。 全稱命題舉例:全稱命題舉例:全稱命題符號記法:全稱命題符號記法:命題:對任意的nZ,2n+1是奇數(shù); 所有的正方形都是矩形。 通常,將含有變量通常,將含有變量x的語句用的語句用p(x), q(x), r(x),表示,變量表示,變量x的取值范圍用的取值范圍用M表示,那么,表示,那么,( ),xMp x ,全稱命題全稱命題“對對M中任意一個中任意一個x,有,有p(x)成立成立 ”可用符號簡記

3、為:可用符號簡記為:讀作讀作“對任意對任意x屬于屬于M,有,有p(x)成立成立”。解:解:(1)假命題;)假命題; (2)真命題;)真命題; (3)假命題。)假命題。例例1 判斷下列全稱命題的真假:判斷下列全稱命題的真假:(1)所有的素數(shù)都是奇數(shù);所有的素數(shù)都是奇數(shù);(2) (3)對每一個無理數(shù))對每一個無理數(shù)x,x2也是無理數(shù)。也是無理數(shù)。2,1 1;xR x 小小 結:結: 判斷全稱命題 xM,p(x)是真命題的方法: 判斷全稱命題 xM,p(x)是假命題的方法:需要對集合需要對集合M中每個元素中每個元素x,證明,證明p(x)成立成立只需在集合只需在集合M中找到一個元素中找到一個元素x0,

4、使得,使得p(x0)不成立即可不成立即可 (舉反例)(舉反例)P23 P23 練習:練習:1 判斷下列全稱命題的真假:判斷下列全稱命題的真假:(1)每個指數(shù)函數(shù)都是單調(diào)函數(shù);)每個指數(shù)函數(shù)都是單調(diào)函數(shù);(2)任何實數(shù)都有算術平方根)任何實數(shù)都有算術平方根;(3)2 |xx xx 是無理數(shù) , 是無理數(shù)。P22 思考:下列語句是命題嗎?下列語句是命題嗎?(1)與與(3),(2)與與(4)之間有什么關系?之間有什么關系?(1)2x+1=3;(2)x能被能被2和和3整除;整除;(3)存在一個存在一個x0R,使,使2x+1=3;(4)至少有一個至少有一個x0Z,x能被能被2和和3整除。整除。語句語句(

5、1)(2)(1)(2)不能判斷真假,不是命題;不能判斷真假,不是命題;語句語句(3)(4)(3)(4)可以判斷真假,是命題??梢耘袛嗾婕?,是命題。存在量詞、特稱命題定義:存在量詞、特稱命題定義:短語短語“存在一個存在一個”“”“至少有一個至少有一個”在邏輯中通常叫做存在量在邏輯中通常叫做存在量詞,詞,并用符號并用符號“ ”“ ”表示。表示。含有存在量詞的命題,叫做特稱命題。含有存在量詞的命題,叫做特稱命題。常見的存在量詞還有常見的存在量詞還有“有些有些”“”“有一個有一個”“對某個對某個”“”“有的有的”等等 。 特稱命題舉例:特稱命題舉例:特稱命題符號記法:特稱命題符號記法:命題:有的平行四

6、邊形是菱形;命題:有的平行四邊形是菱形; 有一個素數(shù)不是奇數(shù)。有一個素數(shù)不是奇數(shù)。 通常,將含有變量通常,將含有變量x的語句用的語句用p(x), q(x), r(x),表示,變量表示,變量x的取值范圍用的取值范圍用M表示,那么,表示,那么,00(),xMp x,特稱命題特稱命題“存在存在M中的一個中的一個x0,使,使p(x0)成立成立 ”可用符號簡記為:可用符號簡記為:讀作讀作“存在一個存在一個x0屬于屬于M,使,使p(x0)成立成立”。解:解:(1)假命題;)假命題; (2)假命題;)假命題; (3)真命題。)真命題。例例2 判斷下列特稱命題的真假:判斷下列特稱命題的真假:(1)有一個實數(shù))

7、有一個實數(shù)x0,使,使x02+2x0+3=0;(2)存在兩個相交平面垂直于同一條直線;)存在兩個相交平面垂直于同一條直線; (3)有些整數(shù)只有兩個正因數(shù)。)有些整數(shù)只有兩個正因數(shù)。小小 結:結:00判斷特稱命題 xM,p(x )是真命題的方法:00判斷特稱命題 xM,p(x )是假命題的方法:需要證明集合需要證明集合M中,使中,使p(x)成立的元素成立的元素x不存在。不存在。只需在集合只需在集合M中找到一個元素中找到一個元素x0,使得,使得p(x0) 成立即可成立即可 (舉例證明)(舉例證明)P23 P23 練練 習:習:2 判斷下列特稱命題的真假:判斷下列特稱命題的真假:(1)(2)至少有一

8、個整數(shù),它既不是合數(shù),也不是素數(shù);)至少有一個整數(shù),它既不是合數(shù),也不是素數(shù);(3)200 |xx xx是無理數(shù) ,是無理數(shù)。00,0;xR x解:解:(1)真命題;)真命題; (2)真命題;)真命題; (3)真命題。)真命題。練習 (2)存在這樣的實數(shù)它的平方等于它本身。)存在這樣的實數(shù)它的平方等于它本身。 (3)任一個實數(shù)乘以)任一個實數(shù)乘以-1都等于它的相反數(shù);都等于它的相反數(shù); (4)存在實數(shù))存在實數(shù)x,x3x2; 3、用符號、用符號“ ”與與“ ”表達下列命表達下列命題:題: (1)實數(shù)都能寫成小數(shù)形式;)實數(shù)都能寫成小數(shù)形式;小結:2 2、全稱命題的符號記法。、全稱命題的符號記法

9、。 1、全稱量詞、全稱命題的定義。、全稱量詞、全稱命題的定義。 3、判斷全稱命題真假性的方法。、判斷全稱命題真假性的方法。 4、存在量詞、特稱命題的定義。、存在量詞、特稱命題的定義。5、特稱命題的符號記法。、特稱命題的符號記法。 6、判斷特稱命題真假性的方法。、判斷特稱命題真假性的方法。 同一全稱命題、特稱命題,由于自然語言的不同,可能有不同的表述方法:命題命題 全稱命題全稱命題特稱命題特稱命題所有的所有的xM,p(x)成立成立對一切對一切xM,p(x)成立成立對每一個對每一個xM,p(x)成成 立立任選一個任選一個xM,p(x)成成 立立凡凡xM,都有,都有p(x)成立成立存在存在x0M,使,使p(x)成立成立至少有一個至少有一個x0M,使,使 p(x)成立成立對有些對有些x0M,使,使p(x)成成 立立對某個對某個x0M,使,使p(x)成成 立立有一個有一個x0M,使,使p(x)成成 立立, ( )xM p x 0, ( )xM p x表述方法表述方法作業(yè) 1、P31第第5題。題。 2、設、設a、b、c均為非零實數(shù),求證:方程均為非零實數(shù),求證:方程 ax2+2bx+c=0, bx2+2cx+a=0, cx2+2ax+b=0中至少有一個有實數(shù)根。中至少有一個有實數(shù)根。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!