《湖南省師大附中高考數學 第一講 集合的概念與運算課件 新人教A版》由會員分享,可在線閱讀,更多相關《湖南省師大附中高考數學 第一講 集合的概念與運算課件 新人教A版(20頁珍藏版)》請在裝配圖網上搜索。
1、【湖南師大附中內部資料】高三數學課件:第一講 集合的概念與運算(新人教A版)第一講第一講 集合的概念與運算集合的概念與運算知識回顧知識回顧1集合元素的三個特征:集合元素的三個特征: 確定性、互異性、無序性確定性、互異性、無序性2集合的表示法:集合的表示法:列舉法、描述法、圖示法列舉法、描述法、圖示法3元素與集合的關系有:元素與集合的關系有: 4集合與集合之間的關系有:集合與集合之間的關系有:包含關系包含關系相等關系相等關系真包含關系真包含關系5子集與真子集子集與真子集交集AB .并集AB .補集UA .6、集合的運算x|xA且且xBx|xA或或xBx|xU且且x A7三個重要的結論:三個重要的
2、結論:(1)ABA ,ABA .BAAB(2)card(AB) card(A)card(B)card(AB)(3) S(AB)( SA)( SB), S(AB)( SA)( SB)基礎自測基礎自測1、B2、C3、1,04、15、2例題講解例題講解 例例1、有三個實數的集合既可以表、有三個實數的集合既可以表示為示為 ,,1baa也可以表示為也可以表示為2,0a ab則則20102010_ab例例2、22510 ,2,()Ax xxBy yxa xRABa 已知集合若則 的取值范圍為 11221-424ABCD 、,、,、 ,、,204 , 12 ,_RAxxBy yxxAB 設集合則 例3、28
3、150 ,10 ,Ax xxBx axABBa 設若求實數 組成的集合的子集有 多少個?例4、8例5、某班共30人,其中15人喜愛籃球運動,10人喜愛乒乓球運動,8人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人數為_12例6、從集合1,2,3,4,5的所有非空子集中,等可能地取出一個(1)記性質r:集合中的所有元素之和為10,求所取出的非空子集滿足性質r的概率;(2)記所取出的非空子集的元素個數為,求的分布列和數學期望E.22124323210(1)(2).xAxBx xmxmmxZAABm 設集合當時,求 的非空真子集的個數;若,求 的取 值范圍 例7、,1,2 ,0,2 ,_
4、A Bz zxy xA yBABA B 定義集合的運算:設則集合的所有元素之和為 例8、1,1 11,0, ,1,2,3,43 2xAAAxM 若則就稱 是伙伴關系集合,集合的所有非空子集中,具有伙伴關系的集合的個數為_ _個例9、例10、( )21(),1,2,3,4,5 ,3,4,5,6,7( ),( ),_NNf nnnNPQPnN f nPQnN f nQPQQP 設記則 痧方法規(guī)律方法規(guī)律一、集合的概念一、集合的概念1解題時要注意集合中元素的三個解題時要注意集合中元素的三個性質的應用,特別是無序性和互異性質的應用,特別是無序性和互異性,要進性,要進 行解題后的檢驗注意符行解題后的檢驗
5、注意符號語言與文字語言之間的相互轉號語言與文字語言之間的相互轉化化2解題時要關照空集的特殊地位,解題時要關照空集的特殊地位,討論時要防止遺漏討論時要防止遺漏3元素與集合之間是從屬關系,集合元素與集合之間是從屬關系,集合與集合之間是包含關系與集合之間是包含關系4可以用圖示顯示集合與集合之間的可以用圖示顯示集合與集合之間的關系,用數軸上的點表示數集,注意關系,用數軸上的點表示數集,注意數形結合思想方法的運用數形結合思想方法的運用二、集合的運算二、集合的運算1數形結合的思想方法在集合的運數形結合的思想方法在集合的運算中也是常見的,對于一般的集合運算中也是常見的,對于一般的集合運算時可用韋恩圖直觀顯示,對于可以算時可用韋恩圖直觀顯示,對于可以用區(qū)間表示的數集可以利用數軸進行用區(qū)間表示的數集可以利用數軸進行集合的運算集合的運算2注意一些常見集合運算的性質的注意一些常見集合運算的性質的運用運用.