秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

高二數(shù)學選修44 矩陣與變換課件

上傳人:沈*** 文檔編號:54191980 上傳時間:2022-02-12 格式:PPT 頁數(shù):17 大小:647KB
收藏 版權(quán)申訴 舉報 下載
高二數(shù)學選修44 矩陣與變換課件_第1頁
第1頁 / 共17頁
高二數(shù)學選修44 矩陣與變換課件_第2頁
第2頁 / 共17頁
高二數(shù)學選修44 矩陣與變換課件_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高二數(shù)學選修44 矩陣與變換課件》由會員分享,可在線閱讀,更多相關(guān)《高二數(shù)學選修44 矩陣與變換課件(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 定位 低起點以初中數(shù)學知識為基礎; 低維度以二階矩陣為研究對象; 形數(shù)以(幾何圖形)變換研究二階矩陣。 意圖 在基本思想上對矩陣、變換等有一個初步了解,對進一步學習和工作打下基礎。 通過幾何變換討論二階方陣的乘法及性質(zhì)、矩陣的逆和矩陣的特征向量,矩陣的簡單應用。 二階矩陣與平面向量; 幾種常見的平面變換; 變換的復合與矩陣的乘法; 逆變換與逆矩陣; 特征值與特征向量; 矩陣的簡單應用。 主要數(shù)學思想 (1)幾何變換; (2)代數(shù)運算; (3)數(shù)形結(jié)合的思想;(4)算法思想。 重點 通過幾何圖形變換,學習二階矩陣的基本概念、性質(zhì)和思想。 難點 切變變換,逆變換(矩陣),特征值與特征向量。 主線

2、 通過幾何變換對幾何圖形的作用,直觀認識矩陣的意義和作用。 技術(shù)與內(nèi)容的整合 (1)幾何變換; (2)變換與矩陣的乘法; (3)逆矩陣。 幾何畫板、幾何畫板、Excel 教學要點 從具體實例入手,突出矩陣的幾何意義,遵循從具體到一般,從直觀到抽象的教學原則。21二階矩陣與平面向量 矩陣的概念從表、網(wǎng)絡圖、坐標平面上的點(向量)、生活實例等引出。 二階矩陣與二維(平面)向量的乘法從實例到點變換。案例1案例222幾種常見的平面變換(一)給定一個二階矩陣,就確定了一個變換:Excel-11001 恒等變換 200110035 . 0001 伸壓變換100110011001 反射變換 22幾種常見的平

3、面變換(二)Excel-2cossinsincos 旋轉(zhuǎn)變換 000110000101 投影變換101k101k 切變變換 矩陣變換的基本性質(zhì)線性 矩陣的變換是一種特殊的變換線性變換 ,即把“直線變成直線”,確切地說: 可逆矩陣把直線變成直線,有的矩陣可逆矩陣把直線變成直線,有的矩陣可能把直線變成點可能把直線變成點。 (1)A( ) = A ;(2) A( + ) = A + A 。A( + ) = A + A 。23變換的復合與矩陣乘法 連續(xù)施行兩次變換矩陣的乘法 ; 矩陣乘法滿足結(jié)合律,但不滿足交換律:交換律驗證210010110011021001先旋轉(zhuǎn)再壓縮先壓縮再旋轉(zhuǎn)24逆變換與逆矩陣

4、(一) 反射矩陣(變換)的逆矩陣(變換)是其自身; 伸壓矩陣的逆矩陣是伸壓矩陣;100110011001210012001互逆 與ax = b類比引入單位矩陣和逆矩陣特殊矩陣(變換)的逆矩陣(變換) 。24逆變換與逆矩陣(二) 旋轉(zhuǎn)矩陣的逆矩陣是旋轉(zhuǎn)矩陣; 切變矩陣的逆矩陣是切變矩陣;01100110互逆1021互逆1021 投影矩陣無逆矩陣。 000110000101001124逆變換與逆矩陣(三) 關(guān)于矩陣乘積的逆矩陣; (1)前提;(2)結(jié)論(AB)1 = B1A1; (3)描述1(形象)、描述2(幾何)。 先穿襪子后穿鞋先穿襪子后穿鞋 先脫鞋子后脫襪子先脫鞋子后脫襪子 關(guān)于逆矩陣的計算

5、; (1)用幾何變換的觀點; (2)用方程組; (3)用技術(shù)。01104321Excel-3初等變換法Excel-424逆變換與逆矩陣(四) 二階矩陣與二元一次方程組。 (1)二階行列式;Excel-5 已知變換矩陣及變換結(jié)果,問該結(jié)果已知變換矩陣及變換結(jié)果,問該結(jié)果是由哪一個向量變過來的。是由哪一個向量變過來的。=feyxdcba(2)二元一次方程組的新看法:(3)了解用逆矩陣的方法解二元一次方程組,不必作大量練習。25特征值與循征向量(一) 矩陣的特征向量是在變換下“基本”不變的量; 特征向量的幾何意義。A = A的一個特征值A的屬于的一個特征向量2101021001,010121001=25特征值與循征向量(二) 特征多項式:,)(=dcbaAdcbaf其中 學會從幾何變換的角度進行解釋。10010110伸壓、反射、旋轉(zhuǎn)、投影、切變伸壓、反射、旋轉(zhuǎn)、投影、切變200100111021

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!