人教A版必修4《第三章三角恒等變換》綜合測試卷(B)含答案(數(shù)學(xué)試卷新課標(biāo)人教版)
《人教A版必修4《第三章三角恒等變換》綜合測試卷(B)含答案(數(shù)學(xué)試卷新課標(biāo)人教版)》由會員分享,可在線閱讀,更多相關(guān)《人教A版必修4《第三章三角恒等變換》綜合測試卷(B)含答案(數(shù)學(xué)試卷新課標(biāo)人教版)(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第三章三角恒等變換 (B卷) (測試時間:120分鐘 滿分:150分) 第I卷(共60分) 一、選擇題:本大題共12個小題,每小題5分,共60分.在每小題給出的四 個選項中,只有一項是符合題 目要求的. 1.【2018屆廣東省陽春市第一中學(xué)高三上學(xué)期第三次 .月考】已知角€的終邊經(jīng)過點 匚則sin2? .5,5 2 的值為( 4 A. 5 B. C. D. 10 10 因為角日的終邊經(jīng)過點' --,-} ,5 5 . 4 sin 二一,cos ?= 一 5 故選A. 2.12018屆四川省成都市雙流中學(xué)高三 11月月考】若,則的值為()
2、A. B. C. D. 【解析】由sines + 3sin(; + ci) = 0/則sinci + 3coscs =。3可得tanci = ^^ = —3,則 春故選C. . i-taa^a 1-9 COS2cl = ——z - = -z = —— tazrfa.-^1 1-H) 3.12018屆江西省撫州市臨川區(qū)第一中學(xué)高三上學(xué)期期中】已知角 6滿足sin 1 — JI 十 — cos +- I 的值為( ) 3 、_1 B 4/5 C 475 D 1 9.9. 9.9 【答案】D 【解析】 丁 sin 但一)=2,:. sin / +上)」,1.cos
3、fe +土 )]」所以 cos G +口」,故選 2 6 3 2 6 21 . 3 9 3 9 D. 4. 卜列各式中值為 空的是( 2 A. sin15 cos15 B. sin45 cos15 - cos45 sin15 C. cos75 cos30 sin75 sin30 D. tan60 -tan30 1 tan60 tan30 【答案】C 【解析】cos75 cos30 sin75 sin30 =cos 75 -30 = cos45 =—,故選 C 1 n、 1 一, n 、 5.12018屆陜西省西安市長安區(qū)高三上大聯(lián)考 (一)】設(shè)"為銳角,若
4、cos卜+- |=-1,則ns2 | a + — I 6J 3 I 12」 的值為 A. — B. 7' 2 -8 C. 25 18 【答案】B 一9D.空 50 5 __ 1 【斛析】■ a為銳角,右cos a +— |=— — 6 3 二 二二 二 2 二 設(shè):=:? . —, 0 :二:■:二一,一 :二:■ , 一 :二—— 6 2 6 6 3 sin2 : =2sin : cos : 4-2 cos2 - - 2 cos2--1 =-- 9 bTF iTF bTF ffT fTT fTF JL J L J L q. jL q.
5、jL 0. jL 二 sin(2? +—) =sin(2a +一—一)=sin(2P ——)= sin2Pcos——cos2Psin一 12 3 4 4 4 4 -2-2 X 7- 9 - /(\ - -2-2 q9 4 7.2-8 18 故選B. 6.12018屆江西省贛州市上局二中局二上第二次月考】函數(shù) y=2sin.x+— COS. — —X圖象的一條對 4 4 稱軸方程是( ) A 兀 _ n _ n _ A. X = B. x = C. x = D. 8 4 2 【答案】B 【解析】根據(jù)誘導(dǎo)公式可得: cos'--xLsin f
6、x+- i ,故原式等于y = 2sin,+工icos'--x I 4 4 y . 4 4 ,「冗 I, f JT \ JT =2 sin x +— I =1 一cos 2x +— I=1+sin2x ,故圖像的一條對稱軸是 x =—. I I 4〃 I 2J 4 故答案選B.
7、7 4 圮
y = - sin[2
8、- 1 tan^tan :---二 4——£=\=6d -4 4 1-tan : -- tan- 11 8 4 4 4 7 1 + 4tan a _ 64 2 — _ tan 1 1 25 2 _ cos q- 2sin2 -- sin% +cos% 故選:A. 9 .已知函數(shù)f (x) = J3sin ox+cos切x(0 a 0), x w R.在曲線y=f(x)與直線y = 1的交點中,若相鄰交 點距離的最小值為 ,則f(x)的最小正周期為( 2 A. — B. C. 二 D. 2:\ 【答案】C 【解析】因為 f (x)
9、=2sin(ox+上),所以由 f (x) =2sin(ox+T =1 得:ox +— =— +2kn 6 6 6 6 二 5 5 二 二 2 二 切x+—= —+2mn,(m, k WZ),所以由相鄰交點距離的最小值為 一倚:*,一 =——一一? =2,T=—— =n.選 6 6 3 3 6 6 . C. x 1 . 1 , 10 .已知函數(shù)f (x) =sin ——+-sinox --(? >0), x w R .若f (x)在區(qū)間(江,2冗)內(nèi)沒有零點,則仍的 2 2 2 取值范圍是( ) 1 一 1 5 5 1 1 5 (A) (0,—] ( B) (0, —] J
10、[― ,1) (C) (0,—] ( D) (0,—]□[—,—] 8 4 8 8 8 4 8 【答案】D 【解析】f(1)=1 彳/?511^工_;=4分乂一;),,(1)=0=皿劭又一,所以 加4■至 工=—且=K2琪(kG)F邸匕”已收》n由昵2L 由 8 4 3 4 8 4 3 4 8 8 4 8 ji 選D. 向量 a = (sin 26,cos6),b =(1,-cos6),若 a b = 0 ,則 tan9 =( A. 【答案】D 【解析】 因為 a b = 0 ,所以 sin 2日 x 1 — cos2 日=0 ,即 sin 2日=cos2 8, 所以
11、2sin c cos 二-cos2 丁 因為0 12、 1
冗
tan 二 tan 一
4
1 ,一
--,故選C.
3
第n卷(共90分)
二、填空題(每題
5分,滿分20分,將答案填在答題紙上)
「如 ,n C 272 司 「冗八
13.已知 cos. -6 U V一,貝U cos —+Q\ .
- 1
【答案】 ,, ,冗
-tan - tan—
4
3
【解析】
二 二 二 1 1
cos 一 + 8 l=sin( —6)=±j1—cos ( e)=± ,故應(yīng)填答案 土一.
3 6,6 3 3
14 .已知,貝U.
【答案】
【解析】由題意可得,將分別平方,再 13、整體相加,即可得到的值 ^
1 2
15 .已知 0v “ V 3 V 兀,且 cos c cos a = 一,sin B since =—,則 tan ( 3 - a )的值為
5 5
3
3 -
【解析】cos( P —a) = cos c cosa + sin 口 sin a =-,又 0
【解析】stna + 2cosa = V5sin(a + 3)=/'S” = 2
貝上 14、山3 +3)=得儀+~=可+ 2kn? 2
又mw = 2,[學(xué)E
("(咤)),
則與W =奈皿卡=上,
貝”8s2q =cos(k - 2
15、
1 8
【答案】(1) ―― ;(2) - .
6 5
【解析】
一 3 二
(1) --- sin(3n +a) =2sin(——+a), 2
-sin a = _2cos a ,即 sin a = 2cos a ,
則原式
2cos 二 一4cos 二 _ -2
10cos 工"2cos : 12
(2) sin a = 2cos & ,即 tan a = 2 ,
.2 2
sin -> " 2sin - cos - tan ?" " 2 tan - 4 4 8
一 .2 2 - 2 . 一 一 .一一
sin 二:, cos - tan 工1 1 4 1 5 16、
18.(本小題12分)【2018屆全國名校大聯(lián)考高三第二次聯(lián)考】 已知向量m = (2,sina), n=(cosx,-1),
其中a = 10,—卜且m_Ln.
(1)求 sin2a 和 cos2a 的值;
(2)若 sin (a - P )=^10,且 P w ’0」,求角 P .
“ ’10 I 2,
4 3 - 二
【答案】(1) sin2a=w, cos2a = - - ; (2) P =—.
【解析】試題分析:(1)由已知得2cosa -since =0,從而由cos% +sin2ct =1即可得cost和sina , 由二倍角公式即可得解;.
(2)由sin 17、P =sin髀_(ot -P )]利用兩角差的正弦展開即可得解 .
試題解析:
(1) ,/ -L fi J 2costz-SlDiZ — 0 J
即 siu(z= 2cosez,
代入 CoJa +端 Yoju 1 ,得 5cO”iX=l 丁 且(ZE
JliJcosa =
貝 ij siu2a= 2siDacosa =
cos2a =2cos a —1 =
又sin -=啜,「"」=芍.
?l? sin : =sin -- - -- - - - sin-scos : - - -cos二 sin -- - --
2、5 3 10 -5 -10 18、'2
5 10 5 10 2
因 p€ j0,1 I,得 p =?.
19.(本小題12分)已知函數(shù)f (x)=《3sin 2x-cos2 x-m .
2
(1)求函數(shù)f(x)的最小正周期與單調(diào)遞增區(qū)間;
⑵若x)[51,31 I時,函數(shù)f(x)的最大值為0,求實數(shù)m的值.
IL24 4
1
【答案】(1) T =兀;(2) m =,
2
【解析】
3 . c 2
(1) f(x)=——sin 2x - cos x - m
2
二n2x .
2
1 cos2x
.小 二、 1
_m = sin(2 x-—) -m ,
6 2
19、則函數(shù)f(x)的最小正周期T=n,
ri ri n 一一 人 互 冗 —一 . . H , n _
根據(jù) 一一+2Z <2x < — +2kn k = Z ,得 一一十kn ExE—+kn , k=Z ,
2 6 2 6 3
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為,,l+kn,- + kJi \ kwZ.
一 6 3
,,, 5 二 3 二 二 二 4 二
(2)因為 x=—,—,所以 2x—— w I-,—
_24 4 6 IL4 3
? 冗 冗 冗^
則當(dāng)2x——=—, x=一時,函數(shù)取得最大值 0, 6 2 3
… 1 - 一 1
即 1 一 m - - = 20、 0,解得 m = 一 .
2 2
20.(本小題滿分12分)【2018屆北京市海淀區(qū)高三上學(xué)期期中】已知 .函數(shù)
f x = 2、2cosxsin
(I )求f —的值;
4
(n)求f x應(yīng)區(qū)間0, 一 ?上的最大值和最小值.
一 2
【答案】(1)1 (2) x=一時,f x有最大值J2, x =一時,f x)有最小值-1 8 2
【解析】試題分析:(I)直接將x
/ 3T ] j[ 兀
代入函數(shù)解析式可得 f . =2 2cos—sin— 1
4 4 2
— 2
=2、2 <— <1 -1
2
=1; (n)根據(jù)兩角和的正弦公式及二倍角公式可得
21、f H
sin I 2x — 4
八 元 一 一 一. ?
出2x+一的范圍,結(jié)合正弦函數(shù)的單調(diào)性求解即可
4
試題解析:(I)因為 f「L〕=2j2cos?sin上—1 4 4 2
=1
(n)
f x = 2.. 2cosxsin lx— j 1
… 2 .
=2、.2cosx ——sinx+
旦osx1.1
2
2 ,
2sinxcosx 2cos x -1
= sin2 x cos2x
=2sin 2x
4
Ji
+ —
4
Ji
所以 -2x
4
三sin 12x
4
1W1 故 一1E 疙sin,2x+三
22、4
3T 3T
當(dāng) 2x + -=—,即 x =一時, 4 2 8
f (x府最大值近
ji
當(dāng) 2x -=
4
—,即x =一時,
4 2
f (x )W最小值-1
21.(本小題12分)已知函數(shù)
二 1
f (x) =2sin(切x-一)cos0 x+-(其中切> 0)的取小正周期為 宜. 6 2
(I )求6的值;
2倍,縱坐
(n)將函數(shù)y =f(x)的圖象向左平移 m個單位,再將所得圖象上各點的橫坐標(biāo)伸長為原來的
6
標(biāo)不變,得到函數(shù) g(x).的圖象.求函數(shù)g(x)在[-nM上零點.
【答案】(I)6=i; ( n)」和包. 6 6 23、
【解析】
1 一 2 1
(I ) f (x) =2sin(?x--) cosox+-=73sin ?x cosox-cos ccx+-
3 1
—sin 2&x ——cos28x =sin(2cox 一一)
2 2 6 ,
由最小正周期丁=旦=冗,得6=1.
2 ■
(ID由(I )知/(?= Wn(2x-。),將函數(shù)/(x)的圖象向左平移。個單位, 6 0
得到圖象的解析式嶺)=點過次皿3+ ,
5 6 o
將所得圖象上各點的橫坐標(biāo)伸長為原來的2倍,得到歡功=如。+》. o
工+乙=以 Jce Z , 得了=玄-= 6 6
12分
.故當(dāng)工£[_川]時』困數(shù) 24、級)的零點為W和去
0 6
f x =2cos 2
22.(本小題12分)【2018屆廣東省珠海市珠海二中、斗門一中高三上學(xué)期期中】已知函數(shù)
-x sinx +(sinx +cosx ) . )
(I)求函數(shù)f (x )的單調(diào)遞增區(qū)間;
(n)把y = f (x )的圖象上所有點的橫坐標(biāo)伸長到原來的 2倍(縱坐標(biāo)不變),再把得到的圖象向左平
jt r jt、
移二個單位 得到函數(shù) y=g(x)的圖象,求g二I的值.
3 6
【答案】(1)m
二 ? 3 二
二-*二
8 8
k=Z ) ;⑵ g.
16 )
【解析】試題分析:(1)根據(jù)誘導(dǎo)公式、二倍角的正弦 25、余弦公式以及輔助角公式將函數(shù)化為
y = Asin(^x +邛)的形式,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)增
區(qū)間;(2)把y = f (x )的圖象上所有點的橫坐標(biāo)伸長到原來的 2倍(縱坐標(biāo)不變),再把得到的圖象向
左平移土個單位可得到g(x)的解析式,從而得求 g,"
3 16 J
的值.
二 2
試題解析:(1) f (x ) = 2cos.萬-x pinx+(sinx+cosx ) =sin2 x-cos2x+ 2
=、,2sin I2x -- 2
4
r n c
由2k二——< 2x
2
E2kn 十萬(k = Z ),得 kn -- < x < ku 十
所以“x)的單調(diào)遞增區(qū)間是¥
二 3 二 _
k-: 一一,匕——k Z ,
8 8
(2)由(1)知6=&如(2為一彳1+ 2把7 = 句的圖象上所有點的橫坐標(biāo)伸長到岸來的2倍(級
坐標(biāo)不變).■得到?=而后
+ 2的圖象,再把得到的酶向左平移介單位,得到
g(x)=&siu| X4- -
X. 1上
+ 2的圖象,
工十總十2, F必
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅守廉潔底線
- 2025做擔(dān)當(dāng)時代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗總結(jié)(認真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識培訓(xùn)冬季用電防火安全
- 2025加強政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗總結(jié)(認真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會長長的路慢慢地走