《新編高考數(shù)學(xué)第一輪總復(fù)習(xí)100講 第一章知識(shí)點(diǎn)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)第一輪總復(fù)習(xí)100講 第一章知識(shí)點(diǎn)(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料
第一章知識(shí)點(diǎn)
一、知識(shí)結(jié)構(gòu):
本章知識(shí)主要分為集合、簡(jiǎn)單不等式的解法(集合化簡(jiǎn))、簡(jiǎn)易邏輯三部分:
二、知識(shí)回顧:
(一) 集合
1. 基本概念:集合、元素;有限集、無限集;空集、全集;符號(hào)的使用.
2. 集合的表示法:列舉法、描述法、圖形表示法.
3. 集合元素的特征:確定性、互異性、無序性.
4. 集合運(yùn)算:交、并、補(bǔ).
5. 主要性質(zhì)和運(yùn)算律
(1) 包含關(guān)系:
(2) 等價(jià)關(guān)系:
(3) 集合的運(yùn)算律:
交換律:
結(jié)合律:
分配律:.
0-1律:
等冪律:
求補(bǔ)律:A∩eUA=φ A∪eUA
2、=U eUU=φ eUφ=U eUU(eUA)=A
反演律:eU(A∩B)= (eUA)∪(eUB) eU(A∪B)= (eUA)∩(eUB)
6. 有限集的元素個(gè)數(shù)
定義:有限集A的元素的個(gè)數(shù)叫做集合A的基數(shù),記為card( A)規(guī)定 card(φ) =0.
基本公式:
(3) card(eUA)= card(U)- card(A)
(4)設(shè)有限集合A, card(A)=n,則
(ⅰ)A的子集個(gè)數(shù)為; (ⅱ)A的真子集個(gè)數(shù)為;
(ⅲ)A的非空子集個(gè)數(shù)為;(ⅳ)A的非空真子集個(gè)數(shù)為.
(5)設(shè)有限集合A、B、C, card(A)=n,car
3、d(B)=m,m0(<0)形式,并將各因式x的系數(shù)化“+”;(為了統(tǒng)一方便)
②求根,并在數(shù)軸上表示出來;
③由右上方穿線,經(jīng)過數(shù)軸上表示各根的點(diǎn)(為什么?);
④若不等式(x的系數(shù)化“+”后)是“>0”,則找“線”在x軸上方的區(qū)間;若不等式是“<0”,則找“線”在x軸下
4、方的區(qū)間.
(自右向左正負(fù)相間)
則不等式的解可以根據(jù)各區(qū)間的符號(hào)確定.
特例① 一元一次不等式ax>b解的討論;
②一元二次不等式ax2+box>0(a>0)解的討論.
二次函數(shù)
()的圖象
一元二次方程
有兩相異實(shí)根
有兩相等實(shí)根
無實(shí)根
R
2.分式不等式的解法
(1)標(biāo)準(zhǔn)化:移項(xiàng)通分化為>0(或<0); ≥0(或≤0)的形式,
(2)轉(zhuǎn)化為整式不等式(組)
5、
3.含絕對(duì)值不等式的解法
(1)公式法:,與型的不等式的解法.
(2)定義法:用“零點(diǎn)分區(qū)間法”分類討論.
(3)幾何法:根據(jù)絕對(duì)值的幾何意義用數(shù)形結(jié)合思想方法解題.
4.一元二次方程根的分布
一元二次方程ax2+bx+c=0(a≠0)
(1)根的“零分布”:根據(jù)判別式和韋達(dá)定理分析列式解之.
(2)根的“非零分布”:作二次函數(shù)圖象,用數(shù)形結(jié)合思想分析列式解之.
(三)簡(jiǎn)易邏輯
1、命題的定義:可以判斷真假的語句叫做命題。
2、邏輯聯(lián)結(jié)詞、簡(jiǎn)單命題與復(fù)合命題:
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞;不含有邏輯聯(lián)結(jié)詞的命題是簡(jiǎn)單命題;由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞“或”、
6、“且”、“非”構(gòu)成的命題是復(fù)合命題。
構(gòu)成復(fù)合命題的形式:p或q(記作“p∨q” );p且q(記作“p∧q” );非p(記作“┑q” ) 。
3、“或”、 “且”、 “非”的真值判斷
(1)“非p”形式復(fù)合命題的真假與F的真假相反;
(2)“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;
(3)“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.
4、四種命題的形式:
原命題:若P則q; 逆命題:若q則p;
否命題:若┑P則┑q;逆否命題:若┑q則┑p。
(1)交換原命題的條件和結(jié)論,所得的命題是逆命題;
(2)同時(shí)否定原命題的條件和結(jié)論,所得的命題是否命題;
(3)交換原命題的條件和結(jié)論,并且同時(shí)否定,所得的命題是逆否命題.
5、四種命題之間的相互關(guān)系:
一個(gè)命題的真假與其他三個(gè)命題的真假有如下三條關(guān)系:(原命題逆否命題)
①、原命題為真,它的逆命題不一定為真。
②、原命題為真,它的否命題不一定為真。
③、原命題為真,它的逆否命題一定為真。
6、如果已知pq那么我們說,p是q的充分條件,q是p的必要條件。
若pq且qp,則稱p是q的充要條件,記為p?q.
7、反證法:從命題結(jié)論的反面出發(fā)(假設(shè)),引出(與已知、公理、定理…)矛盾,從而否定假設(shè)證明原命題成立,這樣的證明方法叫做反證法。